|国家科技期刊平台
首页|期刊导航|控制理论与应用|工业过程关键指标预测的知识协同进化增强图卷积网络方法

工业过程关键指标预测的知识协同进化增强图卷积网络方法OA北大核心CSTPCD

Enhancing graph convolutional network of knowledge-based co-evolution for industrial process key variable prediction

中文摘要英文摘要

在流程工业关键变量预测领域,已有研究致力于将过程知识与大数据相结合,以实现更高的准确性,降低过拟合风险和提高可解释性.然而,现有工作存在准确的先验知识构建成本高、无法从丰富的数据中挖掘知识等问题,限制了这些方法在实际工业过程中的广泛应用.为了解决这些挑战,本文提出了一种基于知识协同进化的增强图卷积网络方法.首先,利用易获取的过程流图构建低成本的粗粒度流程知识.然后,在图卷积神经网络模型训练中引入图探索,实现知识更新.最后,为了降低知识复杂度并保持一致性,设计了一种知识过滤机制.所提出的方法在基准的脱丁烷塔工艺过程上进行了验证.实验结果表明,该方法具有出色的预测准确性,并获得高质量的新知识.

Efforts have been made in the field of industrial process key variable prediction to integrate process knowl-edge with big data in order to achieve higher accuracy,reduce the risk of overfitting,and improve interpretability.However,existing approaches face challenges such as the high cost of constructing accurate prior knowledge and the inability to extract knowledge from abundant data,which limits their applicability to real industrial processes.To address these issues,this study proposes an enhanced graph convolutional network of knowledge-based co-evolution(KBCE-GCN)method for industrial process key variable prediction.Initially,a coarse-grained process knowledge is constructed from an easily ac-cessible process flow diagram,requiring minimal construction cost.Subsequently,graph exploration is introduced in GCN model training to update the knowledge.Finally,a knowledge filtering mechanism is designed to reduce the complexity of the knowledge and maintain consistency.The proposed KBCE-GCN method is validated using a benchmark debutanizer column process.The experimental results demonstrate excellent prediction accuracy and the acquisition of high-quality new knowledge.

牟天昊;邹媛媛;李少远

上海交通大学自动化系,上海 200240||系统控制与信息处理教育部重点实验室,上海 200240

关键指标预测流程工业知识挖掘图卷积神经网络数据-知识驱动建模脱丁烷塔

key variable predictionprocess industryknowledge mininggraph convolutional networkdata-knowledge driven modelingdebutanizer column process

《控制理论与应用》 2024 (003)

网络化系统分布式实时优化决策理论及应用

416-427 / 12

Supported by the National Key R&D Program of China(2018AAA0101701)and the National Natural Science Foundation of China(61833012,62173224).

10.7641/CTA.2023.20352

评论