| 注册
首页|期刊导航|现代电子技术|基于GSABO-BP和Bootstrap的电力负荷区间预测

基于GSABO-BP和Bootstrap的电力负荷区间预测

李琦 许素安

现代电子技术2024,Vol.47Issue(10):28-33,6.
现代电子技术2024,Vol.47Issue(10):28-33,6.DOI:10.16652/j.issn.1004-373x.2024.10.006

基于GSABO-BP和Bootstrap的电力负荷区间预测

Power load interval prediction based on GSABO-BP and Bootstrap

李琦 1许素安1

作者信息

  • 1. 中国计量大学 机电工程学院,浙江 杭州 310018
  • 折叠

摘要

Abstract

In allusion to the issue of high volatility in electricity load sequences and low predictive accuracy,an electricity load interval prediction method based on the GSABO-BP(golden sine algorithm-subtraction average based optimizer-back propagation)model and Bootstrap is proposed.An improved GSABO algorithm is proposed,which can integrate the golden sine algorithm(Gold-SA)to enhance its search ability while preserving the good convergence of the subtraction average based optimizer(SABO).The proposed method is used to optimize the weights and thresholds of the BP neural network,constructing a GSABO-BP prediction model for point prediction of power load.The Bootstrap method is used to analyze the error of power load prediction,and determine the fluctuation range of the output results by combining with the point prediction results.The simulation testing shows that the proposed method has strong optimization ability and good robustness.In comparison with other algorithms,this method has significantly improved in prediction accuracy,interval reliability,interval width,etc.The combination of point prediction and interval prediction results can help accurately evaluate prediction errors and has high practical application value.

关键词

电力负荷功率/区间预测/BP神经网络/GSABO算法/全局优化/点预测

Key words

power load power/interval prediction/BP neural network/GSABO algorithm/global optimization/point prediction

分类

电子信息工程

引用本文复制引用

李琦,许素安..基于GSABO-BP和Bootstrap的电力负荷区间预测[J].现代电子技术,2024,47(10):28-33,6.

基金项目

国家自然科学基金面上项目(62373339) (62373339)

国家电网有限公司科学技术项目(5700-202314248A-1-1-ZN) (5700-202314248A-1-1-ZN)

现代电子技术

OA北大核心CSTPCD

1004-373X

访问量0
|
下载量0
段落导航相关论文