基于低对比度红外图像时空信息的气体泄漏检测OA北大核心CSTPCD
Gas leakage detection based on spatiotemporal information of low contrast infrared images
气体泄漏事故造成的危害是多方面的,如环境污染、人员财产损失、火灾爆炸.红外热成像作为可实现大范围快速成像的定性探测技术被广泛使用,相比一般红外图像,气体红外图像的对比度更低,边缘更加模糊,不易识别.针对上述问题,本文提出一种基于混合高斯背景建模的低对比度气体红外图像泄漏检测方法.首先,在预处理阶段,提出时域自适应帧间滤波算法实现红外图像的降噪和细节保持;然后,基于空域信息和梯度信息约束,提出时空混合高斯背景模型实现泄漏气体目标的前景的初步提取;最后,为更好地去除前景检测中干扰的运动目标,利用改进的快速鲁棒的模糊C均值聚类方法实现气体区域的自适应分割.实验结果表明,在5 m的泄漏距离下,该检测算法可有效提高准确率,弥补气体区域空洞问题,降低其他运动物体的干扰,气体泄漏检测准确率在92.3%~96.3%,与其他算法相比具有显著的抗干扰和区域分割能力.
The hazards caused by gas leakage accident are multifaceted,such as environmental pollution,personnel and property loss,fire and explosion.Thermal infrared imaging is widely used as a qualitative detection technology that can realize large-scale and fast imaging.However,compared with general infra-red image,the contrast of gas cloud infrared image is lower,the edge is more blurred,and it's hard to de-tection.To solve this problem,this article proposed a leak detection method for low contrast gas infrared images based on mixed Gaussian background modeling.Firstly,in the preprocessing stage,time-domain adaptive interframe filtering algorithm was proposed to realize noise reduction and detail maintenance of in-frared images.Then,based on spatial information and gradient information constraints,a spatiotemporal mixed Gaussian background model was proposed to achieve preliminary extraction of the foreground of leaked gas targets.Finally,to better remove interfering moving targets in foreground detection,an im-proved fast and robust fuzzy C-means clustering method was used to realize adaptive segmentation of gas regions.The experimental results show that at the leakage distance of 5 m,this detection algorithm can ef-fectively improve accuracy,compensate for the problems of gas region voids,and reduce interference from other moving objects.The accuracy of gas leakage detection is between 92.3%and 96.3%,which has significant anti-interference and region segmentation capabilities compared to other algorithms.
左金辉;徐文斌;周世杰;盛道斌;徐向东;李正强;韩颖慧;吴春江;张磊
中国科学院 空天信息创新研究院,国家环境保护卫星遥感重点实验室&遥感科学国家重点实验室,北京 100101||中国科学院大学,北京 100049中国科学院 空天信息创新研究院,国家环境保护卫星遥感重点实验室&遥感科学国家重点实验室,北京 100101||北京环境特性研究所 光学辐射重点实验室,北京 100854电子科技大学 信息与软件工程学院,四川 成都 610054江苏安级联科技有限公司,江苏 南通 226000四川易方智慧科技有限公司,四川 成都 610000中国科学院 空天信息创新研究院,国家环境保护卫星遥感重点实验室&遥感科学国家重点实验室,北京 100101中国科学院大学 资源与环境学院,北京 100049
计算机与自动化
气体泄漏检测红外热成像时空高斯混合模型时域自适应帧间滤波运动检测快速和鲁棒的模糊C均值聚类
gas leakage detectioninfrared thermal imagingspatiotemporal Gaussian mixture modeltime-domain adaptive inter frame filteringmoving detectionfast and robust fuzzy C-means clustering
《光学精密工程》 2024 (008)
1186-1198 / 13
国家重点研发计划(No.2022YFE0209500);国家重点研发计划(No.2023YFB3907405)
评论