增强型金枪鱼群优化指数熵的砂粒显微图像分割OA北大核心CSTPCD
Sand microscopic image segmentation with enhanced tuna swarm optimization exponential entropy
砂粒显微图像分割可以辅助地质评估,但因其种类繁多,特征复杂,为分割的准确度带来了挑战.针对该类图像提出一种增强型金枪鱼群优化指数熵的分割方法(ETSO-EXP),可以有效保留各类砂粒的纹理特征.首先,针对金枪鱼群优化算法(TSO)在全局搜索与局部开发上的若干不足,提出了混沌扰动策略、动态权重策略和余弦干扰策略对其增强,基准函数实验表明ETSO大幅提高了收敛精度,小幅提高了收敛速度.其次,将ETSO用于确定EXP的分割阈值,以分割图像的信息量为标准验证了该方案的可行性.最后,在雅鲁藏布江砂粒显微图像数据集上进行分割实验,与TSO-EXP相比,ETSO-EXP分割的图像在峰值信噪比、结构相似性、特征相似度和寻优速度的评估上分别达到了18.78%,6.85%,4.16%和3.83%的提升,在同类分割方法中性能最优.结果表明,分割方法ETSO-EXP对于对比度较高、纹理丰富或砂粒碎屑尺寸差异较大的图像都具有较高的分割精度和计算速度.
Microscopic image segmentation of sand grains can assist geological assessment,but it poses challenges to the accuracy of segmentation due to its variety and complex features.For such images,a seg-mentation method with enhanced tuna swarm optimization exponential entropy(ETSO-EXP)was pro-posed,which could effectively preserve the texture features of various sand grains.First of all,aiming at some deficiencies of the tuna swarm optimization(TSO)algorithm in global search and local develop-ment,a chaotic disturbance strategy,a dynamic weight strategy and a cosine disturbance strategy were proposed to enhance it.The benchmark function experiment showed that the ETSO greatly improved the convergence accuracy and slightly increased the convergence speed.Secondly,the ETSO algorithm was used to determine the segmentation threshold of the EXP,and the feasibility of the scheme was verified by taking the information content of the segmented image as the standard.Finally,a segmentation experi-ment was carried out on the Yarlung Zangbo River sand microscopic image dataset.Compared with the TSO-EXP,the image of the ETSO-EXP segmentation has a better peak signal-to-noise ratio,structural similarity,feature similarity and the optimization speed has been improved by 18.78%,6.85%,4.16%and 3.83%,respectively,and the performance is the best among the similar segmentation meth-ods.The results show that the segmentation method with the ETSO-EXP has high segmentation accura-cy and calculation speed for images with high contrast,rich texture or large differences in the size of sand debris.
王梦菲;王卫星;徐琨;李理敏
长安大学 信息学院,陕西 西安 710064温州大学 电气与电子工程学院,浙江 温州 325035
计算机与自动化
砂粒显微图像图像分割指数熵金枪鱼群优化
sand grain microscopic imageimage segmentationexponential entropytuna swarm opti-mization
《光学精密工程》 2024 (008)
1199-1211 / 13
国家自然科学重点基金项目(No.U1401252);浙江省教育厅科研项目(No.Y202146796);浙江省自然科学基金资助项目(No.LTY22F020003);温州市重大科技创新项目(No.ZG2021029)
评论