| 注册
首页|期刊导航|电气技术|基于贝叶斯优化-卷积神经网络-双向长短期记忆神经网络的锂电池健康状态评估

基于贝叶斯优化-卷积神经网络-双向长短期记忆神经网络的锂电池健康状态评估

衣思彤 刘雅浓 马耀浥 李文婕 孔航

电气技术2024,Vol.25Issue(5):1-10,21,11.
电气技术2024,Vol.25Issue(5):1-10,21,11.

基于贝叶斯优化-卷积神经网络-双向长短期记忆神经网络的锂电池健康状态评估

State of health assessment of lithium battery based on Bayesian optimization-convolution neural network-bi-directional long short term memory neural network

衣思彤 1刘雅浓 2马耀浥 1李文婕 3孔航3

作者信息

  • 1. 大连交通大学自动化与电气工程学院,辽宁 大连 116028
  • 2. 大连交通大学机车车辆工程学院,辽宁 大连 116028
  • 3. 大连交通大学计算机与通信工程学院,辽宁 大连 116028
  • 折叠

摘要

Abstract

Accurate estimation of battery state of health(SOH)is the key to the stable operation of the device.In order to solve the problems in the current SOH research,such as the difficulty to measure the volume directly and the time required to adjust the model parameters,a prediction model based on the multi-health features of Bayesian optimization(BO)optimized convolution neural network(CNN)and bi-directional long short term memory(BiLSTM)neural network is proposed.Based on NASA's publicly available lithium battery data,three health characteristics are extracted.The combination of CNN and BiLSTM improves the processing ability of time series data,and adds BO algorithm to automatically search the optimal parameter set,which avoids the combination network model falling into the local optimal and reduces the estimation time.The results show that the proposed method has the highest prediction accuracy and can aeffectively estimate the SOH of lithium batteries.The mean absolute error and root mean square error are both within 1%.

关键词

锂电池/健康状态(SOH)/贝叶斯优化(BO)算法/卷积神经网络(CNN)/双向长短期记忆(BiLSTM)神经网络

Key words

lithium battery/state of health(SOH)/Bayesian optimization(BO)/convolutional neural network(CNN)/bi-directional long short term memory(BiLSTM)neural network

引用本文复制引用

衣思彤,刘雅浓,马耀浥,李文婕,孔航..基于贝叶斯优化-卷积神经网络-双向长短期记忆神经网络的锂电池健康状态评估[J].电气技术,2024,25(5):1-10,21,11.

基金项目

辽宁省自然科学基金(2021-MS-298) (2021-MS-298)

电气技术

1673-3800

访问量0
|
下载量0
段落导航相关论文