针对嵌入式设备的YOLO目标检测算法改进方法OA北大核心CSTPCD
Improvement methods for YOLO object detection algorithm targeting embedded devices
针对算法在资源有限的嵌入式设备实现困难的问题,本文基于YOLO系列算法提出适应嵌入式设备实现的轻量化改进方法.方法具体包括:基于YOLOv4-Tiny算法结构,引入GhostNet思想改进其网络主干,大量降低网络参数量和计算量;通过加强颈部网络特征融合效果,减少模型压缩导致的精度损失;采用训练中量化的方式将网络模型参数从32位浮点型数据转换为适合嵌入式设备计算的8位定点型参数.实验结果表明,改进后的网络在检测精度满足应用要求的情况下,模型尺寸相对原算法降低57%,在嵌入式设备上实现功耗仅3.795 W.
To address the problem of implementing algorithms on resource-limited embedded devices,a lightweight im-provement is proposed based on the YOLO series of algorithms to adapt to embedded device implementation,specif-ically including:improving the network backbone by introducing GhostNet ideas based on the YOLOv4-Tiny algo-rithm structure to significantly reduce network parameters and computational complexity;strengthening the fusion effect of neck network features to reduce accuracy loss caused by model compression;and using quantization during training to convert network model parameters from 32-bit floating-point data to 8-bit fixed-point parameters suitable for embedded device computation.Experimental results show that after the improvement in this paper,the network's model size relative to the original algorithm is reduced by 57%when the detection accuracy meets application re-quirements,and the power consumption for embedded device implementation is only 3.795 W.
张立国;孟子杰;金梅
燕山大学电气工程学院 秦皇岛 066000
目标检测YOLOv4-Tiny轻量化设计嵌入式实现加速器
object detectionYOLOv4-Tinylightweight designembedded implementationaccelerator
《高技术通讯》 2024 (004)
356-365 / 10
国家重点研发计划(2020YFB1711001)资助项目.
评论