| 注册
首页|期刊导航|高技术通讯|基于改进分类器动态选择算法的滚珠丝杠副状态识别

基于改进分类器动态选择算法的滚珠丝杠副状态识别

文娟

高技术通讯2024,Vol.34Issue(4):396-405,10.
高技术通讯2024,Vol.34Issue(4):396-405,10.DOI:10.3772/j.issn.1002-0470.2024.04.007

基于改进分类器动态选择算法的滚珠丝杠副状态识别

Ball screw condition recognition based on an improved dynamic classifier selection method

文娟1

作者信息

  • 1. 浙江工业大学机械工程学院 杭州 310023||恒丰泰精密机械股份有限公司 温州 325000
  • 折叠

摘要

Abstract

To improve the condition recognition rates of the ball screw,an improved dynamic classifier selection method is proposed.In this method,with neighborhood components analysis(NCA),the neighborhood of the test sample is defined accurately and adaptively without selecting the distance metric,and then the competence of each classifier in the multiple classifier system for accurately recognizing the testing task can be measured more exactly.Conse-quently,the classification accuracy is no longer restricted by the distance metric selection.The presented approach is applied to identify the health state of the ball screw.First,the AdaBoost algorithm is employed to create a back propagation(BP)neural networks pool.Then,to enhance the classification rates,the proposed dynamic classifier selection methodology is utilized to select the most suited classifier from the classifier pool for condition recognition according to the features extracted from the online signal.Experimental results show that the proposed method can identify the ball screw condition effectively with an accuracy of 97.22%,which is higher than that of the BP neural networks,AdaBoost,and the conventional dynamic classifier selection method.

关键词

分类器动态选择/邻域成分分析(NCA)/状态识别/滚珠丝杠副/多分类器系统

Key words

dynamic classifier selection/neighborhood components analysis(NCA)/condition recognition/ball screw/multiple classifier system

引用本文复制引用

文娟..基于改进分类器动态选择算法的滚珠丝杠副状态识别[J].高技术通讯,2024,34(4):396-405,10.

基金项目

国家自然科学基金(51475425),绍兴市"揭榜挂帅"制科技项目(2021B41006)和浙江省博士后科研项目择优(273426)资助项目. (51475425)

高技术通讯

OA北大核心CSTPCD

1002-0470

访问量0
|
下载量0
段落导航相关论文