| 注册
首页|期刊导航|建筑结构学报|基向量引导的支持向量机RC框架抗震韧性评估

基向量引导的支持向量机RC框架抗震韧性评估

施文凯 周宇 王尉阔 欧阳谦 骆欢

建筑结构学报2024,Vol.45Issue(5):81-91,11.
建筑结构学报2024,Vol.45Issue(5):81-91,11.DOI:10.14006/j.jzjgxb.2022.0922

基向量引导的支持向量机RC框架抗震韧性评估

Basis vectors-guided support vector machines for seismic resilience assessment of RC frames

施文凯 1周宇 1王尉阔 1欧阳谦 1骆欢1

作者信息

  • 1. 湖北省地质灾害防治工程技术研究中心,湖北宜昌 443002||三峡大学土木与建筑学院,湖北宜昌 443002
  • 折叠

摘要

Abstract

Machine learning methods can evaluate the seismic resilience of buildings by establishing a nonlinear mapping relationship between inputs related to building information and seismic parameters and outputs representing resilience indicators.However,large training datasets pose challenges due to the computation of large-scale inverse matrices,leading in low computational efficiency and high memory usage.To address this issue,we propose a basis vector guided support vector machine regression(BVLS-SVMR)model.Replacing the original large-scale basis vectors for building predictive models,this model extracts small-scale sub-samples from large training datasets and maps them into a high-dimensional feature space as basis vectors.To validate its accuracy and efficiency,seismic resilience data from 9 356 reinforced concrete(RC)frame buildings(school buildings)were used.Compared with the support vector machine(LS-SVMR)model and the traditional finite element method(FEM),these results demonstrate the BVLS-SVMR model exhibited a test set prediction accuracy difference of only 0.011 compared to the LS-SVMR model and its computation time was only 1/10 of the LS-SVMR model and 1/21 709 of the traditional FEM.This proves BVLS-SVMR model's ability to accurately and rapidly predict seismic resilience indicators for school buildings.

关键词

基向量/支持向量机/机器学习/钢筋混凝土框架/抗震韧性

Key words

basis vectors/support vector machines/machine learning/reinforced concrete frames/seismic resilience

分类

土木建筑

引用本文复制引用

施文凯,周宇,王尉阔,欧阳谦,骆欢..基向量引导的支持向量机RC框架抗震韧性评估[J].建筑结构学报,2024,45(5):81-91,11.

基金项目

湖北省自然科学基金面上项目(2022CFB294),国家自然科学基金青年项目(52208485). (2022CFB294)

建筑结构学报

OA北大核心CSTPCD

1000-6869

访问量1
|
下载量0
段落导航相关论文