|国家科技期刊平台
首页|期刊导航|中国兽医杂志|机器学习方法在预测细菌耐药表型中的应用

机器学习方法在预测细菌耐药表型中的应用OA北大核心

Application of Machine Learning Methods in Predicting Bacterial Antimicrobial Resistance Phenotypes

中文摘要英文摘要

随着我国经济迅速发展和医疗需求不断增长,人医临床、宠物临床和畜牧养殖行业中抗菌药物的使用愈发频繁,导致病原菌耐药问题日趋严峻,造成公共卫生安全隐患.快速、准确的细菌耐药表型检测能够有效指导临床医生对感染性疾病的诊断和治疗,降低由经验用药和不合理用药引发的耐药风险.然而,现有检测技术耗时较长且操作繁琐,难以在临床中推广,种类单一的快速检测试剂等产品又无法满足临床的多元化需求.因而,亟需开发新的技术方法以提供快速鉴定细菌耐药表型的有效解决方案.细菌的组学信息中蕴含大量与细菌耐药表型相关的特征,从中快速、准确地挖掘相关信息能够为快速诊断和治疗提供帮助.机器学习模型在处理复杂结构数据方面有显著优势,在挖掘组学信息工作中展示巨大应用潜力.随着该领域的快速发展,机器学习方法有望为临床快速、准确地预测耐药表型提供技术支持,助力医生诊疗准确性的提升.本综述系统总结了机器学习模型在细菌耐药表型预测领域的研究现状和发展趋势,并比较了不同机器学习方法的特点和性能,同时归纳总结细菌耐药表型预测建模工作所需的关键要素,为后续相关研究提供参考.

With the rapid development of the economy and the increasing demand for medical services in China,the use of antimicrobials in human clinical,pet clinical and husbandry industries has become more frequent,This has led to an increasingly serious problem of antimicrobial resistance(AMR),posing a potential threat to public health security.Rapid and accurate detection of AMR phenotypes can effectively guide clinical diagnosis and treatment of infectious diseases,reducing the risk of AMR caused by empirical and irrational drug use.However,the existing detection technologies are time-consuming and cumbersome,making it difficult to be widely used in clinical practice.Moreover,single-type rapid detection reagents and similar products cannot meet the diverse clinical needs.Therefore,there is an urgent need to develop new technologies to provide effective solutions for rapid identification of AMR phenotypes in clinic.Genomic information of bacteria contains a wealth of features related to AMR phenotypes.Rapid and accurate extraction of relevant information from this data can assist in rapid diagnosis and treatment.Machine learning models have significant advantages in processing complex structured data and have shown great application potential in mining genomic information.With the rapid development of this field,machine learning methods are expected to provide technical support for rapid and accurate prediction of AMR phenotypes in clinical practice,and help doctors improve the accuracy of diagnosis and treatment.This review systematically summarizes the current research status and development trends of machine learning models in the field of predicting AMR phenotypes,compares the characteristics and performance of different machine learning methods,and summarizes the key elements required for predicting and modeling AMR phenotypes,providing references for subsequent relevant research.

邹之宇;王璐;汪洋;张凯英;马士珍;杨璐;陈丝雨;吕艳丽;吴聪明;沈建忠;夏兆飞

中国农业大学动物医学院 兽医公共卫生安全全国重点实验室,北京 海淀 100193||中国农业大学动物医学院农业农村部动物源细菌耐药性监测重点实验室,北京 海淀 100193中国农业大学动物医学院 兽医公共卫生安全全国重点实验室,北京 海淀 100193||中国农业大学动物医学院农业农村部动物源细菌耐药性监测重点实验室,北京 海淀 100193||北京市疾病预防控制中心 北京市食物中毒诊断与溯源技术重点实验室,北京 东城 100013中国农业大学动物医学院,北京 海淀 100193

生物学

细菌耐药性表型预测机器学习

bacterial antimicrobial resistancephenotypic predictionmachine learning

《中国兽医杂志》 2024 (005)

1-11 / 11

国家重点研发计划(2022YFD1800400)

10.20157/j.cnki.zgsyzz.2024.05.001

评论