| 注册
首页|期刊导航|中国兽医杂志|机器学习方法在预测细菌耐药表型中的应用

机器学习方法在预测细菌耐药表型中的应用

邹之宇 王璐 汪洋 张凯英 马士珍 杨璐 陈丝雨 吕艳丽 吴聪明 沈建忠 夏兆飞

中国兽医杂志2024,Vol.60Issue(5):1-11,11.
中国兽医杂志2024,Vol.60Issue(5):1-11,11.DOI:10.20157/j.cnki.zgsyzz.2024.05.001

机器学习方法在预测细菌耐药表型中的应用

Application of Machine Learning Methods in Predicting Bacterial Antimicrobial Resistance Phenotypes

邹之宇 1王璐 1汪洋 1张凯英 1马士珍 1杨璐 2陈丝雨 3吕艳丽 3吴聪明 1沈建忠 1夏兆飞3

作者信息

  • 1. 中国农业大学动物医学院 兽医公共卫生安全全国重点实验室,北京 海淀 100193||中国农业大学动物医学院农业农村部动物源细菌耐药性监测重点实验室,北京 海淀 100193
  • 2. 中国农业大学动物医学院 兽医公共卫生安全全国重点实验室,北京 海淀 100193||中国农业大学动物医学院农业农村部动物源细菌耐药性监测重点实验室,北京 海淀 100193||北京市疾病预防控制中心 北京市食物中毒诊断与溯源技术重点实验室,北京 东城 100013
  • 3. 中国农业大学动物医学院,北京 海淀 100193
  • 折叠

摘要

Abstract

With the rapid development of the economy and the increasing demand for medical services in China,the use of antimicrobials in human clinical,pet clinical and husbandry industries has become more frequent,This has led to an increasingly serious problem of antimicrobial resistance(AMR),posing a potential threat to public health security.Rapid and accurate detection of AMR phenotypes can effectively guide clinical diagnosis and treatment of infectious diseases,reducing the risk of AMR caused by empirical and irrational drug use.However,the existing detection technologies are time-consuming and cumbersome,making it difficult to be widely used in clinical practice.Moreover,single-type rapid detection reagents and similar products cannot meet the diverse clinical needs.Therefore,there is an urgent need to develop new technologies to provide effective solutions for rapid identification of AMR phenotypes in clinic.Genomic information of bacteria contains a wealth of features related to AMR phenotypes.Rapid and accurate extraction of relevant information from this data can assist in rapid diagnosis and treatment.Machine learning models have significant advantages in processing complex structured data and have shown great application potential in mining genomic information.With the rapid development of this field,machine learning methods are expected to provide technical support for rapid and accurate prediction of AMR phenotypes in clinical practice,and help doctors improve the accuracy of diagnosis and treatment.This review systematically summarizes the current research status and development trends of machine learning models in the field of predicting AMR phenotypes,compares the characteristics and performance of different machine learning methods,and summarizes the key elements required for predicting and modeling AMR phenotypes,providing references for subsequent relevant research.

关键词

细菌耐药性/表型预测/机器学习

Key words

bacterial antimicrobial resistance/phenotypic prediction/machine learning

分类

生物科学

引用本文复制引用

邹之宇,王璐,汪洋,张凯英,马士珍,杨璐,陈丝雨,吕艳丽,吴聪明,沈建忠,夏兆飞..机器学习方法在预测细菌耐药表型中的应用[J].中国兽医杂志,2024,60(5):1-11,11.

基金项目

国家重点研发计划(2022YFD1800400) (2022YFD1800400)

中国兽医杂志

OA北大核心

0529-6005

访问量0
|
下载量0
段落导航相关论文