|国家科技期刊平台
首页|期刊导航|现代制造工程|基于MFA-UNet的铜制螺纹零件外表面缺陷检测

基于MFA-UNet的铜制螺纹零件外表面缺陷检测OA北大核心CSTPCD

Copper threaded part surface defect detection algorithm based on MFA-UNet

中文摘要英文摘要

针对工业现场铜制螺纹零件外表面缺陷检测效率低和精度差的问题,提出一种融合多尺度特征与注意力的U型网络(Multi-Scale Features and Attention Fused UNet,MFA-UNet)模型的铜制螺纹零件外表面缺陷检测算法.首先,设计一种双路下采样模块,并行使用普通卷积和空洞卷积提升模型的特征提取能力;其次,在跳跃连接部分加入复合空间注意力模块,增强分割模型对空间信息和边缘信息的提取能力;然后,在上采样过程中加入压缩激励模块,提高模型的表达能力和特征选择能力;最后,提出一种相似度对比算法,比较分割图像和掩码图像的相似度,得到缺陷检测结果.实验表明,所提分割模型在铜制螺纹零件缺陷检测数据集上PA指标达到94.81%,MIoU指标达到93.78%;所提算法缺陷检测准确率达到98.9%,满足工业现场的使用需求.

In industrial settings,detecting surface defects on copper threaded parts often faces challenges of low efficiency and poor accuracy.To address this,it proposes a copper threaded part surface defect detection algorithm based on MFA-UNet(Multi-Scale Features and Attention Fused UNet).Firstly,a dual down sampling module is designed,utilizing both ordinary convolution and dilated convolution to enhance the model's feature extraction capabilities.Secondly,a compound spatial attention module is integrated into the skip-connection part to improve the model's ability to extract spatial and edge information.Subsequently,a squeeze and excitation module is incorporated during the upsampling process to enhance the model's expressive power and feature selection ability.Lastly,it proposes a similarity comparison algorithm that measures the similarity between segmented images and mask images to obtain the defect detection results.Experimental results demonstrate that the proposed segmentation model a-chieves a PA of 94.81%and an MIoU of 93.78%on the copper threaded part defect detection dataset.The defect detection ac-curacy of the proposed algorithm reaches 98.9%,meeting the requirements for industrial field applications.

马涛;李敬兆

安徽理工大学计算机科学与工程学院,淮南 232001

计算机与自动化

零件缺陷检测图像分割注意力机制相似度对比

part defect detectionimage segmentationattention mechanismsimilarity comparison

《现代制造工程》 2024 (005)

矿山信息与物理接口机制与安全交互方法研究

113-120,94 / 9

国家自然科学基金资助项目(51874010)

10.16731/j.cnki.1671-3133.2024.05.015

评论