基于ICEEMDAN与POA-SVM的感应电机故障诊断OA北大核心CSTPCD
Fault diagnosis of induction motor based on ICEEMDAN and POA-SVM
针对感应电机定子电流故障特征提取困难,支持向量机(SVM)惩罚系数c和核函数参数g的选择对诊断结果影响较大等问题,提出一种改进自适应噪声平均总体经验模态分解(ICEEMDAN)与鹈鹕优化算法(POA)优化支持向量机(POA-SVM)相结合的感应电机故障诊断方法.首先,利用ICEEMDAN经陷波器滤除工频的定子电流获得一系列固有模态函数(IMF);然后,选取各状态信号的前7阶IMF分量并计算能量熵作为故障特征向量;最后,将故障特征向量输入POA-SVM模型得到诊断结果.通过仿真软件Ansoft/Maxwell建立电机模型来获得电流数据,诊断准确率达到了 100%,实现了感应电机的故障诊断.为进一步验证诊断方法的优越性,搭建电机故障模拟试验台来采集电流信号,结果表明,该方法在空载、半载和满载3种负载情况下诊断准确率均可达到97.5%以上,与其他故障诊断方法相比,所提方法对感应电机电气故障具有更好的识别能力.
It is difficult to extract the stator current fault features of induction motor,and the selection of Support Vector Machine(SVM)penalty coefficient c and kernel function parameter g has great influence on the diagnosis results.An induction motor fault diagnosis method based on Improved Complete Ensemble Empirical Mode Decomposition with Adaptive Noise(ICEEMDAN)and Support Vector Machine(POA-SVM)optimized by Pelican Optimization Algorithm(POA)was proposed.Firstly,ICEEMDAN was used to decompose the stator current filtered by notch filter to obtain a series of Intrinsic Mode Function(IMF).Then,the first 7 order IMF components of each state signal were selected and the energy entropy was calculated as the fault feature vector.Finally,the fault feature vector was input into the POA-SVM model to obtain the diagnosis result.Through the simulation software Ansoft/Maxwell,the motor model was established to obtain the current data,the diagnosis accuracy reaches 100%,and the fault diagnosis of induction motor was realized.In order to further verify the superiority of the diagnosis method,a motor fault simulation test bed was built to collect current signals.The results show that the diagnosis accuracy of the proposed method can reach more than 97.5%under three load conditions:no-load,half-load and full-load.Compared with other fault diagnosis meth-ods,the proposed method has better recognition ability for induction motor electrical faults.
刘满强;吴杰
兰州理工大学电气工程与信息工程学院,兰州 730000
动力与电气工程
改进自适应噪声平均总体经验模态分解鹈鹕优化算法支持向量机感应电机故障诊断
improved complete ensemble empirical mode decomposition with adaptive noisepelican optimization algorithmsupport vector machineinduction motorfault diagnosis
《现代制造工程》 2024 (005)
127-137 / 11
国家自然科学基金青年项目(62203196)
评论