基于BiLSTM-Attention的F10.7指数预测模型与中国自主数据集的应用OA北大核心CSTPCD
Application of F10.7 Index Prediction Model Based on BiLSTM-attention and Chinese Autonomous Dataset
F10.7 指数是太阳活动的重要指标,准确预测F10.7 指数有助于预防和缓解太阳活动对无线电通信、导航和卫星通信等领域的影响.基于F10.7 射电流量的特性,在双向长短时记忆网络(Bidirectional Long Short-Term Memory Network,BiLSTM)基础上融入注意力机制(Attention),提出了一种基于BiLSTM-Attention的F10.7 预报模型.在加拿大DRAO数据集上其平均绝对误差(MAE)为 5.38,平均绝对百分比误差(MAPE)控制在 5%以内,相关系数(R)高达 0.987,与其他RNN模型相比拥有优越的预测性能.针对中国廊坊L&S望远镜观测的F10.7 数据集,提出了一种转换平均校准(Conversion Average Calibration,CAC)方法进行数据预处理,处理后的数据与DRAO数据集具有较高的相关性.基于该数据集对比分析了RNN系列模型的预报效果,实验结果表明,BiLSTM-Attention和BiLSTM两种模型在预测F10.7 指数方面具有较好的优势,表现出较好的预测性能和稳定性.
The F10.7 index is an important indicator of solar activity.Accurate predictions of the F10.7 index can help prevent and mitigate the effects of solar activity on areas such as radio communications,navigation and satellite communications.Based on the properties of the F10.7 radio flux,the prediction model of F10.7 based on BiLSTM-Attention is proposed by incorporating an Attention mechanism on the Bidirectional Long Short-Term Memory Network(BiLSTM).The Mean Absolute Error(MAE)on the Canadian DRAO dataset is 5.38,the Mean Absolute Percentage Error(MAPE)is controlled to within 5%and the correlation coefficient(R)reaches 0.987.It has superior prediction performance compared with other RNN models in both short-term and medium-term prediction.A Conversion Average Calibra-tion(CAC)method is proposed to preprocess the F10.7 data set observed by the Langfang L&S telescope in China.The processed data has high correlation with the DRAO dataset.Based on this dataset the forecasting effectiveness of the RNN series models is compared and analyzed.The experimental results show that both BiLSTM-Attention and BiLSTM models have significant advantages in predicting the F10.7 index and show excellent predictive performance and good stability.The BiLSTM-Attention model has the highest prediction accuracy when forecasting future first-day data,with MAE and MAPE of 11.10 and 8.66,respectively,and the MAPE is always within 15%in the short-and medium-term fore-casts.This shows that the proposed model has high generalization ability and can effectively predict the F10.7 data set of DRAO and L&S.
闫帅楠;郑艳芳;李雪宝;董亮;黄文耿;王晶;闫鹏朝;娄恒瑞;黄徐胜;李哲
江苏科技大学 镇江 212003中国科学院云南天文台 昆明 650216中国科学院国家空间科学中心 北京 100190北方信息控制研究院集团有限公司 南京 211153
地球科学
F10.7预报双向长短时记忆网络注意力机制L&S数据集
F10.7 index forecastingBidirectional Long Short-Term Memory NetworkAttention mechanismL&S dataset
《空间科学学报》 2024 (002)
251-261 / 11
国家自然科学基金项目(11703009,11803010)和江苏省自然科学基金面上项目(BK20201199)共同资助
评论