噪声干扰下基于PCA-SF的轴承故障诊断方法OA北大核心CSTPCD
Fault Diagnosis of Bearings Based on PCA-SF under Noise Interference
机械故障诊断对降低维修成本和预防事故至关重要.振动信号监测是机械故障诊断中一种有效可行的方法.然而,所采集故障信号往往容易受到其他设备噪声的干扰.因此,从受噪声干扰的监测信号中提取与故障相关的周期脉冲是故障诊断的基础,也是难点.为解决此问题,提出一种基于主成分分析(Principal Component Analysis,PCA)和稀疏滤波(Sparse Filtering,SF)的机械故障特征提取方法.具体来说,首先利用PCA提取噪声干扰信号段的主成分,然后利用SF从主成分中提取有效特征.为减小SF模型的过拟合问题,采用L1/2范数对其目标函数进行正则化约束.最后,将提取的特征输入到Softmax分类器中进行故障识别.分别通过一组仿真和实验案例对所提PCA-SF方法的有效性进行验证.实验结果表明,该方法不仅能准确实现故障分类,而且优于其他传统方法.
Mechanical fault diagnosis is very important for reducing maintenance cost and preventing accidents.Vibration signal monitoring is an effective and feasible method for mechanical fault diagnosis.However,the collected fault signals can be interfered easily by the external noise from the other equipment.Therefore,it is the key as well as the difficulty of fault diagnosis to extract the periodic pulse related to the faults from the noise interfered monitoring signals.To solve this problem,this paper proposed a mechanical fault feature extraction method based on Principal Component Analysis(PCA)and Sparse Filtering(SF).Specifically,PCA is used to extract the principal components of noise interfered signal segments.And then SF is used to extract effective features from the principal components.In order to reduce the over-fitting problem of SF model,the L1/2 norm is used to regularize the objective function.Finally,the extracted features are input into Softmax classifier for fault identification.The effectiveness of the proposed PCA-SF method is verified by a set of simulation and experimental cases.Experimental results show that the proposed method can achieve accurate fault classification,and also outperform other traditional methods.
季珊珊;杜华东;管伟琴;王金瑞;陈新龙;李倩
山东科技大学 机械电子工程学院,山东 青岛 266000澳柯玛股份有限公司,山东 青岛 266000山东科技大学 机械电子工程学院,山东 青岛 266000||澳柯玛股份有限公司,山东 青岛 266000
机械工程
故障诊断噪声干扰主成分分析稀疏滤波
fault diagnosisnoise interferenceprincipal component analysissparse filtering
《噪声与振动控制》 2024 (003)
132-137 / 6
国家自然科学基金资助项目(52005303,52105110);山东省自然科学基金资助项目(ZR2020QE157,ZR2022ME119,ZR2021QE024)
评论