| 注册
首页|期刊导航|福建电脑|双重轻量化PCB缺陷检测算法研究

双重轻量化PCB缺陷检测算法研究

杨洋 陈鑫

福建电脑2024,Vol.40Issue(6):15-20,6.
福建电脑2024,Vol.40Issue(6):15-20,6.DOI:10.16707/j.cnki.fjpc.2024.06.003

双重轻量化PCB缺陷检测算法研究

Research on Dual Lightweight PCB Defect Detection Algorithm

杨洋 1陈鑫1

作者信息

  • 1. 江西理工大学信息工程学院 江西 赣州 341000
  • 折叠

摘要

Abstract

This paper proposes a dual lightweight PCB defect detection algorithm to address the issues of slow detection speed and high requirements for deployment equipment in PCB defect detection methods.Firstly,a lightweight module C3Ghost is adopted in the YOLOv5 backbone network.Then,a feature fusion network is constructed using the GSConv module and C3GS module to obtain partial semantic information lost in the backbone network and improve network detection speed.Finally,multi task global channel pruning is used to prune channels that have a small impact on network accuracy,further reducing the model's parameter and computational complexity.This algorithm was tested on the PKU-Market-PCB dataset,with an average accuracy of 98.9%,a model size of 5.2M,a model parameter count of 2393469,and a detection time of 3.3ms.Compared with the original algorithm,its model size,model parameter count,and detection time were reduced by 64%,66%,and 25%,respectively.

关键词

PCB缺陷检测/双重轻量化/C3Ghost模块/通道剪枝

Key words

PCB Defect Detection/Dual Lightweight/C3Ghost Module/Channel Pruning

分类

信息技术与安全科学

引用本文复制引用

杨洋,陈鑫..双重轻量化PCB缺陷检测算法研究[J].福建电脑,2024,40(6):15-20,6.

基金项目

本文得到江西省研究生创新专项(No.YC2023-S662)资助. (No.YC2023-S662)

福建电脑

1673-2782

访问量0
|
下载量0
段落导航相关论文