融合全局特征的时空网络兴趣点推荐算法OA北大核心CSTPCD
Spatio-Temporal Network Interest Point Recommendation Algorithm Fusing Global Features
随着基于位置社交网络的迅速发展,兴趣点序列推荐逐渐成为近年来研究热点之一.针对现有推荐方法忽略签到数据中的全局信息,未充分考虑序列签到数据之间的时空间隔问题,提出一种融合全局特征的时空网络兴趣点推荐算法.该方法利用关系图神经网络获取签到数据异构网络图的全局特征,将时空门控融入传统门控结构中,融合全局特征对用户移动行为进行建模,再引入自注意力机制学习用户偏好向量表示.在两个真实数据集上进行实验比较与分析,实验结果表明所提方法推荐性能优于同类算法,验证了算法的有效性.
Recommendation of point of interest(POI)is one of the most popular topics in location-based social network(LBSN).The existing recommendation methods do not fully consider the deep influence of the spatial and temporal inter-vals between sequences of check-in data on the recommended sequences.They ignore the global information in the check-in data and focus on the local preferences in the recent check-in sequence of a single user.To address these problems,this paper proposes a global feature fusion based spatiotemporal network(GSTN)interest point recommendation algorithm.The method uses graph neural networks to obtain global features of the heterogeneous network graph of check-in data,and incorporates spatiotemporal gating into the traditional gating structure,fuses global features to model users'mobile behavior,and then introduces a self-attentive mechanism to learn user preference vector representation.Finally,the experi-ments are carried out on two real datasets.The experiments show that the proposesd approach outperforms similar algo-rithms in terms of recommendation performance and verifies the effectiveness of the algorithm.
李鹏飞;贺洋;毋建宏
西安邮电大学 经济管理学院,西安 710061西安邮电大学 现代邮政学院,西安 710061
计算机与自动化
兴趣点推荐门控循环单元关联图神经网络自注意力机制
point of interest(POI)recommendationgated recurrent unitrelational graph convolutional networksself-attentive mechanism
《计算机工程与应用》 2024 (011)
75-83 / 9
国家社科基金后期资助重点项目(21FGLA004);陕西省社会科学基金(2019D038);陕西省教育厅科研计划项目(21JP116);西安市科技计划项目(22NYYF061);陕西省科技创新团队(2023-CX-TD-13).
评论