|国家科技期刊平台
首页|期刊导航|计算机科学与探索|U型卷积网络在乳腺医学图像分割中的研究综述

U型卷积网络在乳腺医学图像分割中的研究综述OA北大核心CSTPCD

Review of U-Net-Based Convolutional Neural Networks for Breast Medical Image Segmentation

中文摘要英文摘要

U-Net及其变体模型在乳腺医学图像分割领域展现了卓越的性能,U-Net采用全卷积网络(FCN)结构进行语义分割,U-Net对称结构的高度灵活性和适应性可以通过调整网络深度、引入新的模块来适应不同的图像分割任务和挑战,这种创新结构对后续网络设计产生了深远影响.深入探讨了基于U型卷积网络在乳腺医学图像分割中的应用,并对近年来用于乳腺医学图像分割的U型卷积网络进行了分类与归纳.针对U-Net网络结构改进的乳腺医学图像分割技术进行了如下总结.阐述了目前广泛使用的乳腺医学图像数据集及评价指标,陈述了常用的数据增强方法;详细介绍了U-Net模型的网络结构以及用于乳腺医学图像的传统分割方法;对用于乳腺医学图像分割方法的U型网络结构按照残差结构、多尺度特征、膨胀机制、注意力机制、跳跃连接机制、结合Transformer等方面改进进行归纳总结.讨论了当下乳腺医学图像分割所遇到的问题与挑战,对未来的研究走向做出了展望.

U-Net and its variants have showcased exceptional performance in the domain of breast medical image segmentation.By employing a fully convolutional network(FCN)structure for semantic segmentation,the symmet-rical structure of U-Net offers remarkable flexibility and adaptability.It can be tailored to diverse image segmenta-tion tasks and challenges by adjusting network depth and incorporating new modules,leaving a significant impact on subsequent network designs.This paper aims to delve into the application of U-shaped convolutional networks in breast medical image segmentation,categorizing and summarizing U-shaped convolutional networks used for this purpose in recent years.It outlines the widely used breast medical image datasets and evaluation metrics,discusses common data augmentation techniques,and provides a detailed introduction to the network structure of the U-Net model along with traditional segmentation methods for breast medical images.Furthermore,it summarizes the im-provements made to the U-Net network structure for breast medical image segmentation,including modifications like residual structures,multi-scale features,dilation mechanisms,attention mechanisms,skip connection mecha-nisms,and integration with Transformers.Finally,it addresses the current challenges and problems encountered in breast medical image segmentation and offers insights into future research directions.

蒲秋梅;殷帅;李正茂;赵丽娜

中央民族大学 信息工程学院,北京 100081中国科学院 高能物理研究所 多学科研究中心,北京 100049

计算机与自动化

医学图像分割U型卷积网络深度学习乳腺疾病图像处理

medical image segmentationU-shaped convolutional networkdeep learningbreast diseaseimage processing

《计算机科学与探索》 2024 (006)

1383-1403 / 21

国家自然科学基金(31971311).This work was supported by the National Natural Science Foundation of China(31971311).

10.3778/j.issn.1673-9418.2307069

评论