融合组件位置信息特征的少样本字体生成OA北大核心CSTPCD
Few Shot Font Generation Fused with Component Position Information
局部组件方法实现少样本字体生成任务,通常会忽略组件位置信息对文字生成的作用,造成生成文字整体结构布局存有偏差.为了能够有效捕获组件位置信息,提出一种融合组件位置信息特征的少样本字体生成方法(CPI-Font).提出的CPI-Font模型以MX-Font为基本框架,设计一种新的全局位置信息提取器.以坐标注意力提取全局位置信息,并通过多头组件注意力关注每个组件在全局位置信息中的不同重要程度,以捕获局部组件在整个字形中的全局位置关系特征,避免生成的字形结构产生偏差.采用公开构建的39种字体作为汉字数据集,与目前主流模型进行大量实验.实验结果显示,提出模型的LPIPS值达到0.112,FID值达到88.5,在内容和风格上的准确率分别达到83.1%、70.4%,在三个评价指标上模型均优于其他算法.结果表明,CPI-Font模型能够有效捕获组件位置信息,并具有较为先进的少样本字体生成性能.
In order to realize the few shot font generation,local component method usually ignores the role of com-ponent location information on text generation,resulting in the deviation of the overall structure layout of the gener-ated text.In order to capture component location information effectively,a method of few shot font generation by integrating component position information features(CPI-Font)is proposed.The proposed CPI-Font model takes MX-Font as the basic framework to design a new global location information extractor.The global position informa-tion is extracted with coordinate attention,and different importance of each component in the global position infor-mation is paid attention to by multi-component attention,so as to capture the global position relation features of lo-cal components in the whole glyphs and avoid the deviation of the generated glyphs structure.Using 39 publicly constructed fonts as Chinese character datasets,a large number of experiments are carried out with the current main-stream models.Experimental results show that the proposed model achieves 0.112 in LPIPS value,88.5 in FID value,and 83.1%and 70.4%in content and style accuracy,respectively.The model is superior to other algorithms in three evaluation indices.The results show that the CPI-Font model can capture the location information of components effectively and has a relatively advanced performance of the few shot font generation.
杨娜;殷雁君;张文轩;云飞
内蒙古师范大学 计算机科学技术学院,呼和浩特 010022
计算机与自动化
字体生成全局位置信息局部组件
font generationglobal position informationlocal component
《计算机科学与探索》 2024 (006)
1556-1565 / 10
内蒙古自治区自然科学基金(2021LHMS06009).This work was supported by the Natural Science Foundation of Inner Mongolia Autonomous Region(2021LHMS06009).
评论