| 注册
首页|期刊导航|工矿自动化|细粒煤分级溢流颗粒粒度在线检测研究

细粒煤分级溢流颗粒粒度在线检测研究

孙豪智 马娇 史长亮 王函露

工矿自动化2024,Vol.50Issue(5):44-51,59,9.
工矿自动化2024,Vol.50Issue(5):44-51,59,9.DOI:10.13272/j.issn.1671-251x.2024040010

细粒煤分级溢流颗粒粒度在线检测研究

Research on online detection of particle size in fine-grained coal classification overflow

孙豪智 1马娇 1史长亮 2王函露1

作者信息

  • 1. 河南理工大学 化学化工学院,河南 焦作 454003
  • 2. 河南理工大学 化学化工学院,河南 焦作 454003||煤炭安全生产与清洁高效利用省部共建协同创新中心,河南 焦作 454003
  • 折叠

摘要

Abstract

Real time online detection of the particle size of the overflow in the selection and classification of fine-grained coal can be carried out,and the classification parameters can be adjusted to reduce the content of coarse particles in the overflow and improve the total clean coal recovery rate.The current research generally limits the detection of overflow particle size to around 180 μm,and the upper limit of slurry volume concentration is 10%.It cannot meet the requirements of overflow particle size detection for fine-grained coal classification cyclones with coarse particle size,wide particle size range,and high volume concentration.A set of ultrasonic online particle size detection system has been developed to improve the upper limit of coal particle size and slurry volume concentration detection.Based on the ultrasonic attenuation model,a coal particle size detection model suitable for on-site conditions of fine-grained coal classification with coal particle size of 44.5-600 μm and slurry volume concentration of 0-40%is constructed.A coal particle size distribution prediction model is established using a BP neural network optimized by particle swarm optimization algorithm,achieving the prediction of the particle size distribution of the overflow slurry in a fine-grained coal classification cyclone.The simulation results based on the coal particle size detection model show that the ultrasonic attenuation value decreases first and then increases with the increase of coal particle size,and increases with the increase of ultrasonic frequency and slurry volume concentration.The ultrasonic online particle size detection system and coal particle size distribution prediction model are respectively used to detect the distribution of overflow particle size(actual value is 150.0,215.0,315.0 μm)in a hydraulic classification cyclone of a certain mine.The results show that the relative errors of the measurement values of the detection system are 10.87%,9.81%,8.48%,and the relative errors of the predicted values of the prediction model are 9.27%,6.05%,and 6.92%.It indicates that the research have achieved accurate detection of overflow particle size in fine-grained coal classification.

关键词

煤炭洗选/细粒煤分选/水力分级/溢流颗粒粒度检测/煤颗粒粒度分布/超声波衰减

Key words

coal washing and selection/fine-grained coal classification/hydraulic classification/detection of overflow particle size/coal particle size distribution/ultrasonic attenuation

分类

矿业与冶金

引用本文复制引用

孙豪智,马娇,史长亮,王函露..细粒煤分级溢流颗粒粒度在线检测研究[J].工矿自动化,2024,50(5):44-51,59,9.

基金项目

河南省科技攻关计划项目(232102231028) (232102231028)

河南理工大学博士基金项目(2022-50). (2022-50)

工矿自动化

OA北大核心CSTPCD

1671-251X

访问量3
|
下载量0
段落导航相关论文