基于Sentinel-2卫星对宁夏惠农区不同季节土壤含盐量定量反演OA
Quantitative Inversion of Soil Salinity in Different Seasons in Huinong District,Ningxia Based on Sentinel-2 Satellite
农田土壤盐渍化对农业可持续发展构成重要制约,尤其在中国西北部的宁夏惠农地区盐渍化土壤分布广泛.但是,由于监测技术的限制,该地区土壤盐碱化的详细情况尚不清楚.目前,搭载在Sentinel-2号卫星上的多光谱仪器(MSI)为土壤盐分动态监测提供了很好的机会.因此,本研究采用Sentinel-2号卫星上搭载的多光谱仪器(MSI),结合机器学习模型,在春夏两季准确监测土壤盐分含量的可行性进行了探讨.并使用三个额外红边波段(B5-B7)代替传统红波段(B4),生成潜在的土壤盐分指数.使用基于PLS-VIP准则的筛选方法筛选光谱协变量,并采用随机森林(RF)、支持向量机(SVM)和极限学习机(ELM)三种机器学习方法建立土壤盐含量反演模型.结果表明:基于Senti-nel-2影像的随机森林模型在反演中表现最佳,具有较好的预测效果,春季和夏季的R2和RE分别为0.825、0.207以及0.711和0.271.研究还揭示了土壤盐分在不同季节间显著变化,春季高于夏季.这一成果对于干旱或半干旱地区的土壤盐渍化监测和土地复垦具有重要指导意义.
Salinisation of agricultural soils poses an important constraint to sustainable agricultural development,especially in the Huinong region of Ningxia,northwestern China,where salinised soils are widely distributed.However,due to the limitations of monitoring technology,the detailed situation of soil salinisation in this region is not known.Currently,the multispectral instrument(MSI)on board the Sentinel-2 satellite provides a good opportunity for monitoring soil salinity dynamics.Therefore,in this study,the feasibility of using the multispectral instrument(MSI)on board the Sentinel-2 satellite,combined with a machine learning model,to accurately monitor the soil salinity content during the spring and summer seasons was explored.And three additional red-edge bands(B5-B7)were used instead of the traditional red band(B4)to generate potential soil salinity indices.A screening method based on the PLS-VIP criterion was used to screen the spectral covariates,and three machine learning methods,namely,Random Forest(RF),Support Vector Machine(SVM)and Extreme Learning Machine(ELM),were employed to build the inverse model of soil salt content.The results showed that the Random Forest model based on Sentinel-2 imagery performed the best in the inversion with good prediction results,with R2 and RE of 0.825 and 0.207 and 0.711 and 0.271 in spring and summer,respectively.The study also revealed that soil salinity varied significantly between seasons,and was higher in spring than in summer.This result is of great significance as a guide for soil salinity monitoring and land reclamation in arid or semi-arid regions.
王拓;申晓晶;栾文杰
宁夏大学土木与水利工程学院 宁夏,银川 750021
地质学
卫星遥感变量筛选反演模型光谱指数机器学习
satellite remote sensingvariable screeninginversion modellingspectral indicesmachine learning
《现代农业研究》 2024 (005)
12-19 / 8
国家自然科学基金项目"黄河流域水沙资源适应性配置整体模型"(项目编号:52169010、51869023);国家重点研发计划项目子课题"黄河上游河套平原灌区节水控盐方法与灌排协同控制技术及产品装备研发"(项目编号:2021YFD1900601).
评论