| 注册
首页|期刊导航|南方电网技术|考虑分时电价和充电利用率特征的大型电动汽车充电站负荷短期预测方法

考虑分时电价和充电利用率特征的大型电动汽车充电站负荷短期预测方法

王长春 王果 赵倩宇 王守相

南方电网技术2024,Vol.18Issue(5):75-84,10.
南方电网技术2024,Vol.18Issue(5):75-84,10.DOI:10.13648/j.cnki.issn1674-0629.2024.05.008

考虑分时电价和充电利用率特征的大型电动汽车充电站负荷短期预测方法

A Short-Term Load Forecasting Method for large scale Electric Vehicle Charging Stations Considering Characteristics of Charging Utilization Rate and Time-of-Use Electricity Price

王长春 1王果 1赵倩宇 2王守相3

作者信息

  • 1. 兰州交通大学自动化与电气工程学院,兰州 730070
  • 2. 天津大学电气自动化与信息工程学院,天津 300072
  • 3. 兰州交通大学自动化与电气工程学院,兰州 730070||天津大学电气自动化与信息工程学院,天津 300072
  • 折叠

摘要

Abstract

Considering the impact of time-of-use electricity pricing and charging utilization characteristics on the load of electric vehicle charging stations,a short-term load forecasting method is proposed for large scale electric vehicle charging stations that integrates long short-term memory and support vector regression(LSTM-SVR).Firstly,a feature matrix is constructed that includes factors influencing the charging load such as time-of-use electricity pricing,charging utilization rates,meteorological information,and historical data on charging load power.Secondly,the complete ensemble empirical mode decomposition with adaptive noise(CEEMDAN)method is applied to decompose sequences of the feature matrix containing time-of-use electricity pricing and charging utilization rates,which enhances data diversity.This process also employs a combined correlation coefficient method for data reduc-tion and feature selection.Subsequently,the northern goshawk optimization(NGO)algorithm is used to optimize the hyperparameters of both LSTM and SVR,solving for weight coefficients and constructing the integrated LSTM-SVR model.Finally,the model is validated using data from a large scale charging station in a specific city.Comparative experiments demonstrate that considering time-of-use electricity pricing and charging utilization features can effectively improve the accuracy of electric vehicle charging station load forecasting by over 8%.Moreover,the proposed LSTM-SVR forecasting method further enhances prediction accuracy.

关键词

短期负荷预测/电动汽车充电站/充电利用率/分时电价/长短期记忆网络/支持向量回归/自适应噪声完备经验模态分解

Key words

short-term load forecasting/electric vehicles charging stations/charge utilization rate/time-of-use electricity price/long short-term memory/support vector regression/complete ensemble empirical mode decomposition with adaptive noise

分类

动力与电气工程

引用本文复制引用

王长春,王果,赵倩宇,王守相..考虑分时电价和充电利用率特征的大型电动汽车充电站负荷短期预测方法[J].南方电网技术,2024,18(5):75-84,10.

基金项目

国家重点研发计划资助项目(2022YFB2403900) Supported by the National Key Research and Development Program of China(2022YFB2403900). (2022YFB2403900)

南方电网技术

OA北大核心CSTPCD

1674-0629

访问量0
|
下载量0
段落导航相关论文