|国家科技期刊平台
首页|期刊导航|水力发电|基于GRU-CNN双网络输出构建BP模型的径流预测方法

基于GRU-CNN双网络输出构建BP模型的径流预测方法OACSTPCD

A Runoff Prediction Method for Constructing BP Model Based on GRU-CNN Dual Network Outputs

中文摘要英文摘要

提高径流预测精度是避免洪水灾害发生的重要手段,由于预测阶段并无已知有效样本,给预测工作带来难度,因此,提出以双网络输出为预测阶段提供数据参考,结合训练阶段双网络输出与真实值之间的关系,对预测阶段采用二次多变量建模实现径流预测.首先,构建 GRU和 CNN深度学习网络,同步输出 2 条径流预测序列;其次,在已知时段内,构建 2 条预测结果与实测值之间的多变量 BP 模型;最后,基于双网络输出预测值,通过确定的 BP模型输出径流预测结果.经测试,该方法给预测时段提供了可靠的先验样本,高效学习了网络输出与真实值之间关系,预测精度显著提升.

Improving the accuracy of runoff prediction is an important means to avoid flood disasters.However,the lack of known effective modeling samples during the prediction phase poses difficulties for the prediction.This paper proposes using dual network outputs to provide data reference for the prediction stage,combining the relationship between the dual network outputs and the true values in the training stage,and using quadratic multivariate modeling to achieve the runoff prediction in prediction stage.Firstly,the GRU and CNN deep learning networks are constructed to synchronously output two runoff prediction sequences.Secondly,within a known time period,a multivariate BP model between two predicted results and the measured values is constructed.Finally,based on the dual network output prediction values,the runoff prediction results are output through the determined BP model.After testing,the proposed method can provide reliable prior samples for predicting time periods,efficiently learn the relationship between network output and true values,and significantly improve prediction accuracy.

张玥;姜中清;周伊;周静姝;王宇露

江苏省水利勘测设计研究院有限公司,江苏 扬州 225127

水利科学

洪水预报径流预测双网络输出GRUCNNBP神经网络

flood forecastingrunoff predictiondual network outputGRUCNNBP neural network

《水力发电》 2024 (006)

17-22 / 6

国家重点研发计划(2022YFC3202601)

评论