| 注册
首页|期刊导航|水力发电|基于GRU-CNN双网络输出构建BP模型的径流预测方法

基于GRU-CNN双网络输出构建BP模型的径流预测方法

张玥 姜中清 周伊 周静姝 王宇露

水力发电2024,Vol.50Issue(6):17-22,6.
水力发电2024,Vol.50Issue(6):17-22,6.

基于GRU-CNN双网络输出构建BP模型的径流预测方法

A Runoff Prediction Method for Constructing BP Model Based on GRU-CNN Dual Network Outputs

张玥 1姜中清 1周伊 1周静姝 1王宇露1

作者信息

  • 1. 江苏省水利勘测设计研究院有限公司,江苏 扬州 225127
  • 折叠

摘要

Abstract

Improving the accuracy of runoff prediction is an important means to avoid flood disasters.However,the lack of known effective modeling samples during the prediction phase poses difficulties for the prediction.This paper proposes using dual network outputs to provide data reference for the prediction stage,combining the relationship between the dual network outputs and the true values in the training stage,and using quadratic multivariate modeling to achieve the runoff prediction in prediction stage.Firstly,the GRU and CNN deep learning networks are constructed to synchronously output two runoff prediction sequences.Secondly,within a known time period,a multivariate BP model between two predicted results and the measured values is constructed.Finally,based on the dual network output prediction values,the runoff prediction results are output through the determined BP model.After testing,the proposed method can provide reliable prior samples for predicting time periods,efficiently learn the relationship between network output and true values,and significantly improve prediction accuracy.

关键词

洪水预报/径流预测/双网络输出/GRU/CNN/BP神经网络

Key words

flood forecasting/runoff prediction/dual network output/GRU/CNN/BP neural network

分类

建筑与水利

引用本文复制引用

张玥,姜中清,周伊,周静姝,王宇露..基于GRU-CNN双网络输出构建BP模型的径流预测方法[J].水力发电,2024,50(6):17-22,6.

基金项目

国家重点研发计划(2022YFC3202601) (2022YFC3202601)

水力发电

OACSTPCD

0559-9342

访问量0
|
下载量0
段落导航相关论文