|国家科技期刊平台
首页|期刊导航|水文地质工程地质|一种新的估计非高斯分布含水层渗透系数场的方法

一种新的估计非高斯分布含水层渗透系数场的方法OA北大核心CSTPCD

A novel approach for estimating hydraulic conductivity of non-Gaussian aquifer

中文摘要英文摘要

集合卡尔曼滤波(ensemble Kalman filter,EnKF)是最流行的数据同化方法之一.然而,在处理非高斯问题时,EnKF存在局限性.为了解决非高斯问题并准确描述含水介质连通性,将正态分数变换(normal-score transformation,NST)与多重数据同化集合平滑器(ensemble smoother with multiple data assimilation,ES-MDA)相结合,提出 NS-ES-MDA 方法.通过对比实验,验证了 NS-ES-MDA方法估计非高斯分布含水层渗透系数场的有效性.相较于重启正态分数集合卡尔曼滤波器(restart normal-score ensemble Kalman filter,rNS-EnKF)方法,NS-ES-MDA 在吸收相同数据后,参数估计精度提升约 34%,计算效率提升约35%.此外,NS-ES-MDA方法受"异参同效"现象的影响较小,具有较强的更新能力,能够保障得到较准确的参数估计值.研究可为非高斯分布含水层参数估计提供一种有效的求解方法.

The ensemble Kalman filter(EnKF)is one of the most widely used data assimilation methods.However,it exhibits limitations in handling non-Gaussian problems.To effectively address such issues and accurately describe the connectivity of aquifers,a novel approach named NS-ES-MDA is developed in this study.The proposed NS-ES-MDA synergistically combines the normal-score transformation(NST)with ensemble smoother with multiple data assimilation(ES-MDA).Through comparative experiments,the efficacy of NS-ES-MDA in estimating the hydraulic conductivity of non-Gaussian distributed aquifers is demonstrated.By assimilating the same dataset,NS-ES-MDA exhibits approximately 34%improvement in parameter estimation accuracy and about 35%enhancement in computational efficiency compared to the restart normal-score ensemble Kalman filter(rNS-EnKF).Furthermore,the NS-ES-MDA shows case robustness against the"equifinality"and displays remarkable updating capabilities,which leads to more precise parameter estimates.This study provides an effective solution for parameter estimation in non-Gaussian distributed aquifers.

孙猛;骆乾坤;孔志伟;郭明;刘明力;钱家忠

合肥工业大学资源与环境工程学院,安徽合肥 230009

地质学

数据同化非高斯场参数估计集合平滑器正态分数变换渗透系数

data assimilationnon-Gaussian fieldsparameter estimationensemble smoother with multiple data assimilationnormal-score transformationhydraulic conductivity

《水文地质工程地质》 2024 (003)

23-33 / 11

国家重点研发计划项目(2022YFC3702200);安徽省自然科学基金项目(JZ2022AKZR0451)

10.16030/j.cnki.issn.1000-3665.202308022

评论