|国家科技期刊平台
首页|期刊导航|中国电机工程学报|基于多级注意力机制融合的电能质量扰动点分类及时间定位方法研究

基于多级注意力机制融合的电能质量扰动点分类及时间定位方法研究OA北大核心CSTPCD

Research on Multi-level Attention Mechanism Optimized Method for Point Classification and Time Interval Identification of Power Quality Disturbances

中文摘要英文摘要

随着新能源渗透率的不断提高,电网所受电能质量扰动(power quality disturbances,PQD)变得更加复杂,传统方法难以准确识别扰动类型并定位扰动时间.因此,该文提出一种基于多级注意力机制融合的PQD点分类及时间定位方法.该方法以卷积神经网络为基础建立分类模型,在预处理和模型内部分别嵌入局部特征注意力机制(local feature attention mechanism,LFAM)和双尺度注意力机制(dual-scale attention mechanism,DSAM).其中,LFAM根据幅值包络线追踪信号的幅值变化,以加权方式增强信号波形的局部特征;DSAM 则从通道和神经元两个尺度协助模型学习各维度特征的重要性.最后,模型以多类别-多输出的形式对每个采样点进行分类,并完成扰动时间定位.为了验证所提方法的有效性,该文建立含63种PQD类型的仿真数据库对模型进行测试.在30 dB白噪声环境下,该模型平均分类准确率为 99.10%,时间定位误差均为毫秒级,具有更强的泛化性能和鲁棒性.同时,基于交流电源搭建硬件平台来测试模型,其平均准确率为 99.03%,进一步验证了所提方法的可靠性.

As the penetration of renewable energy increases rapidly,the power quality disturbance(PQD)is becoming more and more complex,making it difficult for traditional methods to accurately identify the PQD and locate the time interval.To address this problem,this paper proposes a PQD point classification and time interval identification method based on the incorporation of multi-level attention mechanism.The classification model is constructed by using convolutional neural network(CNN)with the local feature attention mechanism(LFAM)and the dual-scale attention mechanism(DSAM).LFAM tracks changes in amplitude by analyzing the envelope and selectively amplifies local features in the signal waveform using weighted techniques.On the other hand,DSAM facilitates the model in identifying the significance of features from both the channel and neuron perspectives.Finally,each sampling point is classified in the form of multiclass-multioutput,based on which the time interval is also identified.To validate the effectiveness of the proposed method,a simulation dataset with 63 PQD types is established.The average classification accuracy of the proposed model is 99.10%in a 30dB white noise environment,and the time-detection errors are all in the millisecond range,which has better generalization performance and robustness than other deep learning models.Additionally,a hardware platform utilizing an AC power supply is developed to assess the performance of the model.The model achieves an average accuracy of 99.03%on this platform,further verifying the reliability of the proposed method.

刘宇龙;崔宪阳;袁丁;金涛

福州大学电气工程与自动化学院,福建省 福州市 350108智能配电网装备福建省高校工程研究中心,福建省 福州市 350108

动力与电气工程

电能质量扰动点分类时间定位深度学习注意力机制融合模型

power quality disturbance(PQD)point classificationtime interval identificationdeep learningattention mechanismfusion model

《中国电机工程学报》 2024 (011)

4298-4310,中插10 / 14

国家自然科学基金项目(51977039). Project Supported by National Natural Science Foundation of China(51977039).

10.13334/j.0258-8013.pcsee.223404

评论