|国家科技期刊平台
首页|期刊导航|郑州大学学报(工学版)|基于轻量化深度卷积循环网络的MVS方法

基于轻量化深度卷积循环网络的MVS方法OA北大核心CSTPCD

MVS Method Based on Lightweight Deep Convolutional Recurrent Network

中文摘要英文摘要

针对基于深度学习的 MVS方法存在网络参数量大、显存占用较高的问题,提出一种基于轻量化深度卷积循环网络的 MVS方法.首先,采用轻量化多尺度特征提取网络提取图像的高层语义特征图,构建稀疏代价体减小计算体积;其次,使用卷积循环网络对代价体进行正则化,一次平面扫描完成正则化过程,减少显存占用;最后,通过深度图扩展模块扩展稀疏深度图为稠密深度图,并结合优化算法保证重建精度.在 DTU 数据集上与最近的方法进行对比,包括传统 MVS方法 Camp、Furu、Tola、Gipuma,基于深度学习的 MVS方法 SurfaceNet、PU-Net、MVSNet、R-MVSNet、Point-MVSNet、Fast-MVSNet、GBI-Net、TransMVSNet.实验结果表明:所提方法在精度上与其他方法保持较小差距的前提下,能够将预测时显存开销降低至 3.1 GB.

Based on deep learning MVS methods,neural networks suffered from a large number of parameters and high GPU memory consumption.To address this issue,a lightweight deep convolutional recurrent network recurrent network-based MVS method was proposed.Firstly,the original images passed through a lightweight multi-scale fea-ture extraction network to obtain high-level semantic feature maps.Then,a sparse cost volume to reduce the com-putational workload was constructed.Next,GPU memory consumption was reduced by using a simple plane sweep-ing technique that utilized by a convolutional recurrent network for cost volume regularization.Finally,sparse depth maps were extended to dense depth maps using an extension module.With a refinement algorithm,the proposed approach achieved a certain level of accuracy.The proposed approach was compared to state-of-the-art methods on the DTU dataset including traditonal MVS methods Camp,Furu,Tola,and Gipuma,and also including deep learn-ing-based MVS methods SurfaceNet,PU-Net,MVSNet,R-MVSNet,Point-MVSNet,Fast-MVSNet,GBI-Net,and TransMVSNet.The results demonstrated that the proposed approach reduced GPU consumption to approximately 3.1 GB during the prediction stage,and the differences in precision compared to other methods were relatively small.

佘维;孔祥基;郭淑明;田钊;李英豪

郑州大学 网络空间安全学院,河南 郑州 450002||嵩山实验室,河南 郑州 450046||郑州市区块链与数据智能重点实验室,河南 郑州 450002郑州大学 网络空间安全学院,河南 郑州 450002||郑州市区块链与数据智能重点实验室,河南 郑州 450002嵩山实验室,河南 郑州 450046||国家数字交换系统工程技术研究中心,河南 郑州 450002

计算机与自动化

轻量化深度卷积循环网络MVS方法正则化DTU数据集

lightweightdeep convolutional recurrent networkMVS methodregularizationDTU dataset

《郑州大学学报(工学版)》 2024 (004)

11-18 / 8

嵩山实验室预研项目(YYYY022022003);国家自然科学基金资助项目(62206252);河南省科技攻关项目(212102310039)

10.13705/j.issn.1671-6833.2024.04.003

评论