|国家科技期刊平台
首页|期刊导航|高等学校化学学报|bcc结构下二元合金Fe-X(X=Cr,Co,Mo,W)低温低浓度下固溶软化行为的机制

bcc结构下二元合金Fe-X(X=Cr,Co,Mo,W)低温低浓度下固溶软化行为的机制OA北大核心CSTPCD

Mechanism of Solid Solution Softening Behavior in Four Binary Alloys Fe-X(X=Cr,Co,Mo,W)at Low Temperatures and Concentrations

中文摘要英文摘要

采用第一性原理计算研究了体心立方(bcc)Fe的4种二元合金Fe-X(X=Cr,Co,Mo,W)低温低浓度下固溶软化行为的机制,发现低温低浓度下的固溶软化行为由双扭结形核控制,由溶质原子直接引起双扭结形核势垒降低为固溶软化的本征机制,而由溶质原子对间隙原子清除减少双扭结形核为固溶软化的外部机制.分别计算了bcc Fe的4种二元合金Fe-X(X=Cr,Co,Mo,W)中反映双扭结形核势垒的原子行位移(ARD)能和堆垛层错(GSF)能.计算结果表明,仅Cr可微弱降低ARD和GSF能,而Co,Mo,W均引起ARD和GSF能升高,因此,依据固溶软化的本征机制,仅Cr引起固溶软化,而Co,Mo,W均引起固溶强化.Cr,Mo,W与周围Fe原子均为反铁磁相互作用,Co与Fe为铁磁相互作用.尽管铁磁/反铁磁相互作用与价电子数(电子构型)具有一定相关性,双扭结形核势垒并不与价电子数(电子构型)明显相关.进一步的计算表明,双扭结形核势垒与其结合能呈现正相关关系,Cr与Fe结合能减弱,因此双扭结形核势垒降低,而Co,Mo,W与Fe结合能增强,因此双扭结形核势垒升高.而结合能并未表现出与原子半径、电子数(电子构型)的明显相关性,因此,双扭结形核势垒并不与原子半径、电子数(电子构型)明显相关.依据本征机制,Co,Mo,W与Fe的结合能增强引起双扭结形核势垒升高,因此为固溶强化,其二元合金低温低浓度下的固溶软化行为无法用本征机制解释,需要考虑外部机制(如间隙C原子的作用),而Cr二元合金的固溶软化行为可能为本征机制.

In this study,the mechanism of the solid solution softening(SSS)behavior in four binary alloys of body-centered cubic(bcc)iron Fe-X(X=Cr,Co,Mo,W)at low temperatures and concentrations was investigated using first-principles calculations.The SSS behavior of bcc Fe at low temperatures and concentrations is controlled by the nucleation of double kinks.The intrinsic mechanism for SSS occurs when solute atoms directly reduce the nucleation energy barrier for the formation of double kinks.The extrinsic mechanism for SSS occurs when solute atoms reduce the number of interstice atoms,thereby reducing the nucleation energy barrier for double kinks.We calculated the atomic row displacement(ARD)energy and the generalized stacking fault(GSF)energy to clarify the SSS mechanism of the Fe-X(X=Cr,Co,Mo,W)binary alloys.The calculations showed that only Cr can slightly reduce the ARD and GSF energies,while Co,Mo,and W all cause an increase in the ARD and GSF energies.Therefore,according to the intrinsic mechanism of SSS,only Cr causes solid solution softening,while Co,Mo,and W all cause solid solution strengthening.Cr,Mo,and W interact with the surrounding Fe atoms in an antiferromagnetic manner,while Co interacts with Fe in a ferromagnetic manner.Although the ferromagnetic/antiferromagnetic interaction is somewhat correlated with the valence electron number and electron configuration,the nucleation energy barrier is not significantly correlated with them.Further calculations showed that there is a positive correlation between the nucleation energy barrier and the binding energy.The binding energy between Cr and Fe weakens,thus lowering the double kink nucleation energy barrier,while the binding energy between Co,Mo,W,and Fe strengthens,thus increasing the double kink nucleation energy barrier.However,the binding energy did not show a significant correlation with atomic radius or electron configuration,thus the nucleation energy barrier is not significantly correlated with these factors either.Considering the intrinsic mechanism,the increase in the binding energy between Co,Mo,W,and Fe causes the nucleation energy barrier for double kinks to increase,resulting in solid solution strengthening.Therefore,the SSS behavior of the Fe-based binary alloys with Co,Mo,and W at low temperature and low concentration cannot be explained by the intrinsic mechanism,and external mechanisms,such as the effects of interstitial C atoms,need to be considered.On the other hand,the solid solution softening behavior of Cr may be explained by the intrinsic mechanism.

王娜;李翔飞

北京科技大学冶金与生态工程学院,北京 100083

化学

体心立方铁二元合金原子行位移能堆垛层错能固溶软化

Body-centered cubic(bcc)FeBinary alloyAtomic row displacement energy(ARD)Generalized stacking fault energy(GSF)Solid solution softening

《高等学校化学学报》 2024 (006)

钙钛矿结构晶格动力学、热膨胀及其调控的第一性原理计算

15-21 / 7

国家自然科学基金(批准号:11804021)和中央高校基本科研业务费(批准号:RF-TP-16-080A1)资助. Supported by the National Natural Science Foundation of China(No.11804021)and the Fundamental Research Funds for the Central Universities,China(No.FRF-TP-16-080A1).

10.7503/cjcu20240119

评论