| 注册
首页|期刊导航|计算机应用研究|梯度隐藏的安全聚类与隐私保护联邦学习

梯度隐藏的安全聚类与隐私保护联邦学习

李功丽 马婧雯 范云

计算机应用研究2024,Vol.41Issue(6):1851-1861,11.
计算机应用研究2024,Vol.41Issue(6):1851-1861,11.DOI:10.19734/j.issn.1001-3695.2023.09.0403

梯度隐藏的安全聚类与隐私保护联邦学习

Gradient-hiding secure clustering and privacy-preserving federated learning

李功丽 1马婧雯 2范云2

作者信息

  • 1. 河南师范大学计算机与信息工程学院,河南新乡 453007||河南师范大学河南省教育人工智能与个性化学习重点实验室,河南新乡 453007
  • 2. 河南师范大学计算机与信息工程学院,河南新乡 453007
  • 折叠

摘要

Abstract

Federated learning is a kind of advanced distributed machine learning algorithm,which realizes multi-party cooperative training while ensuring the user's control over the data.However,the existing federated learning algorithms have many problems in dealing with Non-IID data,gradient information leakage and dynamic user offline.To solve these problems,this paper proposed a gradient hidden safe clustering and privacy-protecting federated learning based on quaternion,zero sha-ring and secret sharing techniques.Firstly,it used quaternion rotation technology to hide the first-round model gradient and achieve secure clustering stratification without altering the gradient feature distribution,so as to solve the performance degrada-tion issue caused by Non-IID data.Secondly,this paper designed a chain zero sharing algorithm,using single strategy to pro-tect the user model gradient mask.Then,it used the threshold secret sharing to improve the robustness against offline users.Multi-dimensional comparison with other existing algorithms shows that the accuracy of SCFL is improved by about 3.13%~16.03%under the Non-IID data distribution,and the overall running time is improved by about 3~6 times.Mean while,the security of information transmission is guaranteed at any stage,satisfying the design goals of accuracy,security and efficiency.

关键词

联邦学习/隐私保护/聚类/四元数/零共享/秘密共享

Key words

federated learning/privacy-preserving/clustering/quaternion/zero-sharing/secret sharing

分类

信息技术与安全科学

引用本文复制引用

李功丽,马婧雯,范云..梯度隐藏的安全聚类与隐私保护联邦学习[J].计算机应用研究,2024,41(6):1851-1861,11.

基金项目

河南省科技攻关计划资助项目(232102211057) (232102211057)

计算机应用研究

OA北大核心CSTPCD

1001-3695

访问量0
|
下载量0
段落导航相关论文