|国家科技期刊平台
首页|期刊导航|计算机应用研究|梯度隐藏的安全聚类与隐私保护联邦学习

梯度隐藏的安全聚类与隐私保护联邦学习OA北大核心CSTPCD

Gradient-hiding secure clustering and privacy-preserving federated learning

中文摘要英文摘要

联邦学习是一种前沿的分布式机器学习算法,它在保障用户对数据控制权的同时实现了多方协同训练.然而,现有的联邦学习算法在处理Non-IID数据、梯度信息泄露和动态用户离线等方面存在诸多问题.为了解决这些问题,基于四元数、零共享与秘密共享等技术,提出了一种梯度隐藏的安全聚类与隐私保护联邦学习SCFL.首先,借助四元数旋转技术隐藏首轮模型梯度,并且在确保梯度特征分布不变的情况下实现安全的聚类分层,从而解决Non-IID数据导致的性能下降问题;其次,设计了 一种链式零共享算法,采用单掩码策略保护用户模型梯度;然后,通过门限秘密共享来提升对用户离线情况的鲁棒性.与其他现有算法进行多维度比较表明,SCFL在Non-IID数据分布下准确度提高3.13%-16.03%,整体运行时间提高3~6倍.同时,任何阶段均能保证信息传输的安全性,满足了精确性、安全性和高效性的设计目标.

Federated learning is a kind of advanced distributed machine learning algorithm,which realizes multi-party cooperative training while ensuring the user's control over the data.However,the existing federated learning algorithms have many problems in dealing with Non-IID data,gradient information leakage and dynamic user offline.To solve these problems,this paper proposed a gradient hidden safe clustering and privacy-protecting federated learning based on quaternion,zero sha-ring and secret sharing techniques.Firstly,it used quaternion rotation technology to hide the first-round model gradient and achieve secure clustering stratification without altering the gradient feature distribution,so as to solve the performance degrada-tion issue caused by Non-IID data.Secondly,this paper designed a chain zero sharing algorithm,using single strategy to pro-tect the user model gradient mask.Then,it used the threshold secret sharing to improve the robustness against offline users.Multi-dimensional comparison with other existing algorithms shows that the accuracy of SCFL is improved by about 3.13%~16.03%under the Non-IID data distribution,and the overall running time is improved by about 3~6 times.Mean while,the security of information transmission is guaranteed at any stage,satisfying the design goals of accuracy,security and efficiency.

李功丽;马婧雯;范云

河南师范大学计算机与信息工程学院,河南新乡 453007||河南师范大学河南省教育人工智能与个性化学习重点实验室,河南新乡 453007河南师范大学计算机与信息工程学院,河南新乡 453007

计算机与自动化

联邦学习隐私保护聚类四元数零共享秘密共享

federated learningprivacy-preservingclusteringquaternionzero-sharingsecret sharing

《计算机应用研究》 2024 (006)

1851-1861 / 11

河南省科技攻关计划资助项目(232102211057)

10.19734/j.issn.1001-3695.2023.09.0403

评论