| 注册
首页|期刊导航|计算机应用研究|基于内容风格增强和特征嵌入优化的人脸活体检测方法

基于内容风格增强和特征嵌入优化的人脸活体检测方法

何东 郭辉 李振东 刘昊

计算机应用研究2024,Vol.41Issue(6):1869-1875,7.
计算机应用研究2024,Vol.41Issue(6):1869-1875,7.DOI:10.19734/j.issn.1001-3695.2023.09.0443

基于内容风格增强和特征嵌入优化的人脸活体检测方法

Face anti-spoofing method based on content style enhancement and feature embedding optimization

何东 1郭辉 1李振东 1刘昊1

作者信息

  • 1. 宁夏大学信息工程学院,银川 750021
  • 折叠

摘要

Abstract

In response to the issues of inadequate feature representation in existing face anti-spoofing algorithms and poor cross-dataset generalization performance,this paper proposed a face anti-spoofing method based on content-style enhancement and feature embedding optimization.Firstly,this method utilized a ResNet-18 encoder to extract generic features from multiple source domains,and then subjected to separation through two self-adaptive modules with different attention mechanisms,en-hancing the representation of global content features and local style features.Secondly,based on the AdaIN algorithm,it or-ganically fused content features with style features,further improving the feature representation,and the fused features were subsequently input to specific classifiers and domain discriminators for adversarial training.Finally,by employing average neg-ative samples and semi-hard sample triplet mining to optimize feature embeddings,effectively striking a balance between intra-class cohesion and inter-class discrimination,better capturing the boundaries between genuine and spoofed categories.The proposed method was trained and tested on four benchmark datasets,suchas CASIA-FASD,REPLAY-ATTACK,MSU-MFSD,and OULU-NPU.It achieves accuracy of 6.33%,12.05%,8.38%and 10.59%respectively,which are superior to existing algorithms.This indicates that the proposed method can significantly improve the generalization performance of face live detec-tion models in cross-dataset testing.

关键词

人脸活体检测/内容和风格特征自适应模块/AdaIN算法/领域对抗学习/特征嵌入优化

Key words

face anti-spoofing detection/content and style feature self-adaptation modules/AdaIN algorithm/domain adver-sarial learning/feature embedding optimization

分类

信息技术与安全科学

引用本文复制引用

何东,郭辉,李振东,刘昊..基于内容风格增强和特征嵌入优化的人脸活体检测方法[J].计算机应用研究,2024,41(6):1869-1875,7.

基金项目

国家自然科学基金资助项目(62076142) (62076142)

计算机应用研究

OA北大核心CSTPCD

1001-3695

访问量0
|
下载量0
段落导航相关论文