| 注册
首页|期刊导航|计算机应用研究|3D UNeXt:轻量级快速脑提取网络

3D UNeXt:轻量级快速脑提取网络

申华磊 王琦 上官国庆 刘栋

计算机应用研究2024,Vol.41Issue(6):1876-1881,6.
计算机应用研究2024,Vol.41Issue(6):1876-1881,6.DOI:10.19734/j.issn.1001-3695.2023.09.0405

3D UNeXt:轻量级快速脑提取网络

3D UNeXt:lightweight and efficient network for effective brain extraction

申华磊 1王琦 2上官国庆 2刘栋1

作者信息

  • 1. 河南师范大学计算机与信息工程学院,河南新乡 453007||河南省教育人工智能与个性化学习重点实验室,河南 新乡 453007||教学资源与教育质量评估大数据河南省工程实验室,河南新乡 453007
  • 2. 河南师范大学计算机与信息工程学院,河南新乡 453007
  • 折叠

摘要

Abstract

In order to solve the drawbacks of existing brain extraction network,i.e.,complex network structure,large amounts of parameters and low inference speed,this paper proposed a novel network 3D UNeXt for fast and effective brain ex-traction.3D UNeXt greatly reduced parameters and the number of floating point operators(FLOPs),and achieved promising results with the combination of 3D convolution,3D MLP and multi-scale feature fusion.3D UNeXt used U-Net as the basic ar-chitecture and employed 3D convolutional modules to obtain local features in encoding stage.Specifically,the proposed 3D MLP module at the bottleneck stage enhanced the extraction of global features and long-range dependencies among them.In decoding stage,this paper designed a lightweight multiscale feature fusion module to effectively fuse multiscale low-level fea-tures and high-level counterparts.In detail,the 3D MLP module performed linear shift operations in three different axes to ob-tain global receptive fields from different dimension features and establish long-range dependencies among them.This paper compared 3D UNeXt with other counterparts on three datasets:IBSR,NFBS,and HTU-BrainMask.Experimental results show that the 3D UNeXt is superior over other baselines in terms of network parameters,FLOPs,inference accuracy,and inference speed.

关键词

脑提取/深度神经网络/U-Net/多尺度特征融合/3D MLP

Key words

brain extraction/deep neural network/U-Net/multi-scale feature fusion/3D MLP

分类

信息技术与安全科学

引用本文复制引用

申华磊,王琦,上官国庆,刘栋..3D UNeXt:轻量级快速脑提取网络[J].计算机应用研究,2024,41(6):1876-1881,6.

基金项目

国家自然科学基金项目(62072160) (62072160)

河南省科技攻关项目(232102211024) (232102211024)

计算机应用研究

OA北大核心CSTPCD

1001-3695

访问量0
|
下载量0
段落导航相关论文