3D UNeXt:轻量级快速脑提取网络OA北大核心CSTPCD
3D UNeXt:lightweight and efficient network for effective brain extraction
为了解决现有脑提取网络结构复杂、参数量大且推理速度不高的问题,受UNeXt启发,提出一种基于3D卷积、3D多层感知机(multilayer perception,MLP)和多尺度特征融合的轻量级快速脑提取网络3D UNeXt,极大地减少了参数和浮点运算量,取得了令人满意的结果.3D UNeXt以U-Net为基本架构,在编码阶段使用3D卷积模块获取局部特征;在瓶颈阶段通过3D MLP模块获取全局特征和特征之间的远程依赖;在解码阶段借助多尺度特征融合模块高效融合浅层特征和深层特征.特别地,3D MLP模块在三个不同特征轴向进行线性移位操作,以获取不同维度特征的全局感受野并建立它们之间的远程依赖.在IBSR、NFBS和HTU-BrainMask三个数据集上进行实验,以和先进网络进行对比.实验结果表明,3D UNeXt在网络参数、浮点运算量、推理精度和速度等方面显著优于现有模型.
In order to solve the drawbacks of existing brain extraction network,i.e.,complex network structure,large amounts of parameters and low inference speed,this paper proposed a novel network 3D UNeXt for fast and effective brain ex-traction.3D UNeXt greatly reduced parameters and the number of floating point operators(FLOPs),and achieved promising results with the combination of 3D convolution,3D MLP and multi-scale feature fusion.3D UNeXt used U-Net as the basic ar-chitecture and employed 3D convolutional modules to obtain local features in encoding stage.Specifically,the proposed 3D MLP module at the bottleneck stage enhanced the extraction of global features and long-range dependencies among them.In decoding stage,this paper designed a lightweight multiscale feature fusion module to effectively fuse multiscale low-level fea-tures and high-level counterparts.In detail,the 3D MLP module performed linear shift operations in three different axes to ob-tain global receptive fields from different dimension features and establish long-range dependencies among them.This paper compared 3D UNeXt with other counterparts on three datasets:IBSR,NFBS,and HTU-BrainMask.Experimental results show that the 3D UNeXt is superior over other baselines in terms of network parameters,FLOPs,inference accuracy,and inference speed.
申华磊;王琦;上官国庆;刘栋
河南师范大学计算机与信息工程学院,河南新乡 453007||河南省教育人工智能与个性化学习重点实验室,河南 新乡 453007||教学资源与教育质量评估大数据河南省工程实验室,河南新乡 453007河南师范大学计算机与信息工程学院,河南新乡 453007
计算机与自动化
脑提取深度神经网络U-Net多尺度特征融合3D MLP
brain extractiondeep neural networkU-Netmulti-scale feature fusion3D MLP
《计算机应用研究》 2024 (006)
1876-1881 / 6
国家自然科学基金项目(62072160);河南省科技攻关项目(232102211024)
评论