高速铁路隧道内气室参数对列车表面气动效应的影响OA北大核心CSTPCD
Influence of air chamber parameters in high-speed railway tunnel on aerodynamic effect of train surface
应用三维、可压缩、非定常Navier-Stokes方程和有限体积法,以单线隧道人行通道下方布置单个气室为例,分析隧道内气室参数对列车表面气动压力和横向力的影响.研究结果表明:隧道中加设气室后列车表面压力峰值增大,且当气室位于隧道前部、气室纵向长度较长、气室入口面积较大时,列车表面压力峰值增大更明显;当隧道长156 m、气室位于隧道前部、气室长度L为50 m、气室入口面积A为1.2 m2、车速为400 km/h时,列车表面瞬变压力的正负峰值分别比无气室时的正负峰值大0.2 kPa和0.18 kPa;列车所受横向力在车头经过气室入口时产生波动,且波动时间随着气室长度的增大而延长,气室入口面积增大使横向力波动更为剧烈;安装气室后,列车所受横向力峰值通常低于其自身重力的1%,因此,列车发生倾覆概率较低.
Using the three-dimensional,compressible,unsteady Navier-Stokes equations and the finite volume method,the effects of air chamber parameters in a single-line tunnel pedestrian passageway on the aerodynamic pressure and lateral forces on the surface of train were studied.The results indicate that the peak surface pressure of the train increases when air chambers are installed in the tunnel.This effect is more pronounced when the air chamber is located at the front of the tunnel,has a longer longitudinal length and a larger entrance area.For a tunnel length of 156 m,an air chamber with length of 50 m and entrance area of 1.2 m2 located at the front,and a train speed of 400 km/h,the positive and negative peak transient pressures on the train surface are increased by 0.2 kPa and 0.18 kPa,respectively,compared to the case without air chamber.The lateral force acting on the train fluctuates as it passes through the entrance of the air chamber,and the duration of the fluctuation increases with the increase of the air chamber length.Increasing the entrance area of the air chamber intensifies the fluctuation of the lateral force.After installing the air chamber,the peak lateral force acting on the train is generally less than 1%of its own weight,resulting in a low probability of train overturning.
陈大伟;刘钊;杨海波;卫梦杰;刘峰
中车青岛四方机车车辆股份有限公司高速磁浮运载技术全国重点实验室,山东青岛,266111太原理工大学机械与运载工程学院,山西太原,030024中车青岛四方机车车辆股份有限公司高速磁浮运载技术全国重点实验室,山东青岛,266111||太原理工大学机械与运载工程学院,山西太原,030024
交通运输
高速列车隧道气室气动效应
high-speed trainstunnelair chamberaerodynamic effects
《中南大学学报(自然科学版)》 2024 (005)
1822-1833 / 12
国家自然科学基金资助项目(52002265);中国博士后科学基金资助项目(2022M712930);山东省博士后创新项目(SDCX-ZG-202203079);山西省省筹资金资助回国留学人员科研项目(2023-056);山西省研究生科研创新项目(2023KY200);高速磁浮运载技术全国重点实验室开放基金项目资助(SKLM-SFCF-2023-006)(Project(52002265)supported by the National Natural Science Foundation of China;Project(2022M712930)supported by the China Postdoctoral Science Foundation;Project(SDCX-ZG-202203079)supported by the Shandong Province Postdoctoral Innovation Foundation;Project(2023-056)supported by the Research Project for Returning Overseas Scholars Funded by Shanxi Provincial Planning Office;Project(2023KY200)supported by the Graduate Student Research and Innovation Project of Shanxi Province;Project(SKLM-SFCF-2023-006)supported by the Open Foundation of the State Key Laboratory of High-speed Maglev Transportation Technology)
评论