|国家科技期刊平台
首页|期刊导航|节能|内蒙古中部超低能耗农牧民居围护结构多目标优化设计

内蒙古中部超低能耗农牧民居围护结构多目标优化设计OA

Multi-objective optimization design of enclosure structure of farmers and herdsmen's residences with ultra-low energy consumption in central Inner Mongolia

中文摘要英文摘要

为解决内蒙古中部农牧民居外围护结构无合理的保温设计、采暖能耗大、室内热舒适性差问题,通过EnergyPlus、JEPlus软件建立内蒙古中部超低能耗农牧民居的数据集,以冬季采暖能耗、围护结构节能设计增量成本为优化目标,围护结构传热系数为设计变量建立BP神经网络代理模型.将BP神经网络代理模型作为NSGA-Ⅱ算法适应度函数进行围护结构多目标优化研究,经过50次迭代得到帕累托最优解集,最终选出最优方案.结果表明,通过对内蒙古中部典型农牧民居围护结构的优化,使民居冬季采暖能耗降低3 792.49 kWh,达到超低能耗建筑要求,最冷月平均预测平均舒适度(PMV)从-1.71提升到-0.06,节能设计静态投资回收期16.26年.

In order to solve the problems of unreasonable thermal insulation design,high heating energy consumption and poor indoor thermal comfort in the outer envelope of farmers and herdsmen's residences in central Inner Mongolia,the data set of ultra-low energy consumption farmers and herdsmen's residences in central Inner Mongolia was established by EnergyPlus and JEPlus software,and the BP neural network agent model was established with winter heating energy consumption and incremental cost of energy-saving design of envelope as optimization objectives and heat transfer coefficient of envelope as design variables.The BP neural network proxy model is used as the fitness function of NSGA-Ⅱ algorithm to study the multi-objective optimization of envelope.After 50 iterations,the Pareto optimal solution set is obtained,and the optimal scheme is finally selected.The results show that by optimizing the enclosure structure of typical farmers'and herdsmen's houses in central Inner Mongolia,the heating energy consumption of residential houses in winter is reduced by 3 792.49 kWh,which meets the requirements of ultra-low energy consumption buildings.The average PMV value in cold month is increased from-1.71 to-0.06,and the static investment payback period of energy-saving design is 16.26 years.

王志颖;马广兴;卞浩然;杜梅

内蒙古工业大学土木工程学院,内蒙古 呼和浩特 010051内蒙古工业大学土木工程学院,内蒙古 呼和浩特 010051||内蒙古自治区土木工程结构与力学重点实验室,内蒙古 呼和浩特 010051

机械工程

内蒙古中部超低能耗围护结构多目标优化

central Inner Mongoliaultra-low energy consumptionenvelope structuremulti-objective optimization

《节能》 2024 (005)

7-10 / 4

10.3969/j.issn.1004-7948.2024.05.002

评论