| 注册
首页|期刊导航|软件导刊|基于随机卷积核神经网络数据增强的软测量

基于随机卷积核神经网络数据增强的软测量

钱慧 刘瑞兰

软件导刊2024,Vol.23Issue(6):53-58,6.
软件导刊2024,Vol.23Issue(6):53-58,6.DOI:10.11907/rjdk.231424

基于随机卷积核神经网络数据增强的软测量

Soft Sensor Based on Random Convolutional Kernel Neural Network Data Enhancement

钱慧 1刘瑞兰1

作者信息

  • 1. 南京邮电大学 自动化学院、人工智能学院,江苏 南京 210023
  • 折叠

摘要

Abstract

The by-product 4-CBA of PX oxidation reaction in the production process of purified terephthalic acid(PTA)is difficult to mea-sure online,and only a small amount of samples can be obtained through offline analysis.A dynamic soft sensing model RCKN-XGBoost based on random convolutional kernel neural network data augmentation is proposed to address this issue.The model first uses random convolu-tional kernel neural network(RCKN)for data augmentation,expanding the sample size and improving its diversity;Then,the original sample is linearly combined with the expanded sample to form a new dataset;Finally,XGBoost was used to train and predict the network.On the 4-CBA content dataset of PX oxidation process in a certain chemical plant,the RCKN-XGBoost model was compared with XGBoost,CNN,CNN-XGBoost,and Laplace XGBoost models.It was found that the MRE index of the RCKN-XGBoost model decreased by 1.07%,0.92%,0.80%,and 0.65%,respectively,and the RMSE decreased by 27.9%,18.62%,12.58%,and 8.05%,proving the effectiveness of the model.

关键词

软测量/4-CBA/随机卷积核神经网络/数据增强/XGBoost

Key words

soft sensor/4-CBA/random convolutional kernel neural network/data enhancement/XGBoost

分类

信息技术与安全科学

引用本文复制引用

钱慧,刘瑞兰..基于随机卷积核神经网络数据增强的软测量[J].软件导刊,2024,23(6):53-58,6.

软件导刊

1672-7800

访问量0
|
下载量0
段落导航相关论文