| 注册
首页|期刊导航|生物信息学|DLGCN:基于图卷积网络的药物-lncRNA关联预测

DLGCN:基于图卷积网络的药物-lncRNA关联预测

朱济村 周旭 侯斐 曹新玉 姜伟

生物信息学2024,Vol.22Issue(2):93-100,8.
生物信息学2024,Vol.22Issue(2):93-100,8.DOI:10.12113/202212004

DLGCN:基于图卷积网络的药物-lncRNA关联预测

DLGCN:Prediction of drug-lncRNA associations based on graph convolution network

朱济村 1周旭 1侯斐 1曹新玉 1姜伟1

作者信息

  • 1. 南京航空航天大学 自动化学院,南京 211106
  • 折叠

摘要

Abstract

To realize high-throughput identification of new drug-lncRNA associations,we propose a new method DLGCN(Drug-LncRNA graph convolution network)to identify potential drug-lncRNA associations.First,we construct drug-drug and lncRNA-lncRNA similarity networks based on drug structure information and lncRNA sequence information,and then combine them with known drug-lncRNA associations to construct drug-lncRNA heterogeneous network.Next,the attention mechanism and graph convolution operation are applied to the network to learn the low dimensional features of drugs and lncRNAs.The new drug-lncRNA associations are predicted based on the integrated low dimensional features.DLGCN identified the drug-lncRNA associations with an AUROC(Area under the receiver operator characteristic)of 0.843 1,which is superior to classical machine learning methods and common deep learning methods.In addition,DLGCN predict that curcumin could regulate MALAT1,which has been confirmed by recent studies.DLGCN can effectively predict drug-lncRNA associations,which provides an important reference for identification of new tumor therapeutic targets and development of anti-cancer drugs.

关键词

肿瘤/药物/lncRNA/图卷积网络/深度学习

Key words

Tumor/Drug/lncRNA/Graph convolution network/Deep learning

分类

信息技术与安全科学

引用本文复制引用

朱济村,周旭,侯斐,曹新玉,姜伟..DLGCN:基于图卷积网络的药物-lncRNA关联预测[J].生物信息学,2024,22(2):93-100,8.

基金项目

国家自然科学基金面上项目(No.62172213,61872183). (No.62172213,61872183)

生物信息学

OACSTPCD

1672-5565

访问量0
|
下载量0
段落导航相关论文