基于MLR-ANN算法的地应力场反演与裂缝预测OA北大核心CSTPCD
Ground Stress Field Inversion and Fracture Prediction Based on MLR-ANN Algorithm
中国页岩气储层埋藏深,受构造运动影响,地应力分布规律复杂,传统方法很难准确反演区域地应力大小和方向.提出多元线性回归和人工神经网络的耦合算法,对川南长宁—建武区块的页岩气储层及周边地应力场进行反演,并采用综合破裂系数法,对储层裂缝进行预测,划分裂缝发育区域.研究表明,基于多元回归和神经网络的耦合算法能准确反演区域的地应力场分布规律.研究区的地应力以挤压应力为主,方向在NE115°左右.受构造运动产生的断层周边应力较为集中,易发育剪切裂缝,裂缝以发育和较发育程度为主.研究区在邻近龙马溪组底部的五峰组上段和构造大断层部位裂缝发育程度较高.研究成果对该区块完善页岩气开采的井网布置、压裂优化设计和套管损坏防治等有一定的参考价值.
Shale gas reservoirs are deeply buried in China,and the distribution law of ground stress is complex due to tectonic movement.It is difficult for traditional methods to reflect the magnitude and direction distribution of regional in-situ stress accurately.A coupling algorithm of multiple linear regression and artificial neural network is proposed to invert the shale gas reservoir and surrounding ground stress in Changning-Jianwu Block,southern Sichuan.Using the comprehensive fracture coefficient method,the reservoir fractures are predicted and the fracture development areas are divided.The in-situ stress in the study area is mainly compressive stress,and the direction is about NE115°.The stress around the fault caused by tectonic movement is relatively concentrated,and shear cracks are easy to develop.The cracks are mainly developed and medium developed.The study area has a high degree of fracture development in the upper part of the Wufeng Formation and the structural fault near the bottom of the Longmaxi Formation.The research results have important reference value for well pattern arrangement,fracturing optimization design and casing damage prevention of shale gas extraction.
张伯虎;胡尧;王燕;陈伟;罗超
油气藏地质及开发工程全国重点实验室·西南石油大学,四川成都 610500||西南石油大学地球科学与技术学院,四川 成都 610500西南石油大学地球科学与技术学院,四川 成都 610500页岩气评价与开采四川省重点实验室,四川成都 610056||中国石油西南油气田公司页岩气研究院,四川成都 610056
石油、天然气工程
多元线性回归神经网络算法页岩气储层地应力场反演裂缝预测
multiple linear regressionartificial neural networkshale gas reservoirground stress field inversioncoupled algorithmfracture prediction
《西南石油大学学报(自然科学版)》 2024 (003)
1-12 / 12
中国石油-西南石油大学创新联合体科技合作项目(2020CX020100)
评论