| 注册
首页|期刊导航|测控技术|基于声音特征优化和改进支持向量机的鸟声识别

基于声音特征优化和改进支持向量机的鸟声识别

陈晓 曾昭优

测控技术2024,Vol.43Issue(6):21-25,32,6.
测控技术2024,Vol.43Issue(6):21-25,32,6.DOI:10.19708/j.ckjs.2024.06.004

基于声音特征优化和改进支持向量机的鸟声识别

Bird Sound Recognition Based on Optimized Sound Features and Improved SVM

陈晓 1曾昭优2

作者信息

  • 1. 南京信息工程大学电子与信息工程学院,江苏南京 210044||南京信息工程大学江苏省大气环境与装备技术协同创新中心,江苏南京 210044
  • 2. 南京信息工程大学电子与信息工程学院,江苏南京 210044
  • 折叠

摘要

Abstract

To improve the accuracy of bird sound recognition with low number of parameters,a new bird sound recognition method is proposed,including optimization of bird sound signal features and crow search support vector machine(SVM)classification recognition.Firstly,principal component analysis is used to optimize the Mel frequency cepstral coefficients(MFCC)and flipped Mel frequency cepstral coefficients extracted from bird sound,and the optimized sound features parameters is taken as input for the bird sound recognition algorithm.Then,the crow search algorithm is used to optimize the kernel parameters and loss values of the SVM,and an improved SVM network is obtained for bird sound classification and recognition.The experimental test results show that the correct recognition rate of the method for five bird sounds is 92.2%,and the best recognition effect can be achieved when the sound feature dimension is 16.The method provides a feasible approach for automatic bird sound recognition in the wild.

关键词

声音识别/鸟声识别/主成分分析/支持向量机/乌鸦搜索算法

Key words

sound recognition/bird sound recognition/principal component analysis/SVM/crow search algo-rithm

分类

计算机与自动化

引用本文复制引用

陈晓,曾昭优..基于声音特征优化和改进支持向量机的鸟声识别[J].测控技术,2024,43(6):21-25,32,6.

基金项目

南京信息工程大学大学生创新创业训练计划项目(XJDC202310300067) (XJDC202310300067)

测控技术

OACSTPCD

1000-8829

访问量0
|
下载量0
段落导航相关论文