考虑出行需求和引导策略的电动汽车充电负荷预测OA北大核心CSTPCD
Forecasting of Electric-Vehicle Charging Load Considering Travel Demand and Guidance Strategy
随着电动汽车逐步替代燃料汽车,电动汽车充电负荷对电网造成的影响也越来越大,为此提出了一种考虑出行需求与引导策略的电动汽车充电负荷时空分布预测方法.首先,基于路段通行时间模型建立划分功能区域的半动态交通网模型;进一步,建立电动汽车能耗模型,在分析电价、气候和季节等因素对车主出行需求影响的同时,对充电需求、半动态交通网模型、能耗模型以及传统出行链进行修正;然后,考虑外部因素影响下车主的有限理性,提出引导策略下私家车和出租车充电负荷预测方法;最后,在半动态交通网模型中用改进的出行链和起讫点(origin-destination,OD)矩阵分别模拟私家车和出租车研究时间内的出行行为,通过在划分区域的半动态交通网仿真,验证了所提出的电动汽车充电负荷时空分布预测方法的有效性.仿真结果也表明电动汽车充电负荷时空分布预测情况与对外部影响因素的分析相符,同时提出的引导策略能提升车主决策的满意程度.
With electric vehicles (EVs) gradually replacing fueled vehicles,the impact of their charging load on the power grid is increasing. Therefore,this study proposes a spatial-temporal distribution prediction method for the charging load of EVs that considers travel demand and a guidance strategy. First,a semi-dynamic traffic network model that divides functional areas was developed based on a road travel time model. Furthermore,an energy-consumption model of EVs was established,and the charging demand,semi-dynamic transportation network model,energy consumption model,and traditional travel chain were revised according to the influence of the electricity price,climate,and season on the travel demand of vehicle owners. Considering the limited rationality of vehicle owners based on the influence of external factors,a charging load prediction method for private cars and taxis based on a guidance strategy is proposed. Finally,the modified trip chain and OD matrix were used to simulate the travel behavior of private cars and taxis,respectively,in the semi-dynamic traffic network model during the study period,and the validity of the proposed prediction method was verified through a simulation experiment of the semi-dynamic traffic network in the divided regions. The results show that the spatial-temporal distribution of the charging load for EVs is consistent with the analysis of external influencing factors,and the proposed guidance strategy can improve the satisfaction of vehicle owners.
丁乐言;柯松;张帆;林晓明;吴梦维;张杰明;杨军
武汉大学电气与自动化学院,武汉市 430072南方电网科学研究院有限责任公司,广州市 510663||广东省电网智能量测与先进计量企业重点实验室,广州市 510663广东电网有限责任公司肇庆供电局,广东省肇庆市 526060
动力与电气工程
电动汽车出行需求累积前景充电负荷时空分布半动态交通网
electric vehicletravel demandcumulative prospectcharging loadspatial and temporal distributionsemi-dynamic traffic network
《电力建设》 2024 (006)
10-26 / 17
国家自然科学基金项目(51977154);中国南方电网有限责任公司科技项目(031200KK52222008)This work is supported by National Natural Science Foundation of China(No.51977154)and Technology Program of China Southern Power Grid Company Limited(No.031200KK52222008).
评论