基于光伏组件老化特性解耦的渔光互补光伏短期出力预测方法OA北大核心CSTPCD
Short-Term Output Prediction Method for Complementary Fishing and Solar Power Decoupling the Aging Characteristics of Photovoltaic Modules
渔光互补光伏发电能有效提高土地利用率和项目经济价值,但是布置于水面上的光伏板受到水面光波反射、环境温度降低、功率衰退等诸多不确定性影响因素易引起光伏组件老化,给水面光伏出力预测带来挑战.现有的短期光伏出力预测技术大量应用相似日选取以提高预测精度,但缺乏对安装环境不确定性因素引起的组件老化现象的考虑,导致对于水上光伏出力预测精度不足.为此,提出了一种基于光伏组件老化特性解耦的渔光互补光伏短期出力预测方法.首先,构建了一种基于堆叠递归自编码器基学习器的集成学习模型对数据集的老化现象进行解耦,然后运用灰色关联度分析法进行相似日选取去训练待预测时刻的深度学习预测器,并提出改进的蜜獾算法对基学习器的参数进行优化.最后以云南省禄丰市的渔光互补工程为案例验证了所提方法的有效性和优越性.
The"fishery-solar hybrid project"effectively improves land use efficiency and reduces water evaporation.However,photovoltaic panels arranged on the water surface are affected by many factors,such as aging and power decline,making the prediction of water surface photovoltaic output challenging.The existing short-term photovoltaic output prediction technology extensively applies similar day selection to improve the prediction accuracy.However,it lacks consideration of aging phenomena,resulting in insufficient prediction accuracy for aquatic photovoltaic.Therefore,this paper proposes a short-term output prediction method for complementary fishing and solar power that decouples the aging characteristics of photovoltaic modules.First,an integrated learning model based on stacked recursive autoencoder-based learners was constructed to decouple the aging phenomenon of the dataset.Subsequently,the grey correlation analysis method was used to select similar days to train the deep learning predictor for the predicted time,and an improved Honey Badger algorithm was proposed to optimize the parameters of the base learners.Finally,the effectiveness and superiority of the proposed method were verified through a case study of the Fishery Light Complementary Project in Lufeng City,Yunnan Province.
宋文乐;张烨;刘航旭;王磊;葛磊蛟
国网河北省电力有限公司沧州供电分公司,河北省沧州市 061000天津大学智能电网教育部重点实验室,天津市 300072
计算机与自动化
渔光互补组件老化深度学习光伏预测集成学习
fishery-solar hybrid projectcomponent agingdeep learningPV forecastintegrated learning
《电力建设》 2024 (007)
25-33 / 9
This work is supported by National Natural Science Foundation of China(No.52277118). 国家自然科学基金项目(52277118)
评论