|国家科技期刊平台
首页|期刊导航|电力建设|基于tscTFCSNPS路径选择的区域综合能源系统低碳优化方法

基于tscTFCSNPS路径选择的区域综合能源系统低碳优化方法OA北大核心CSTPCD

Low-Carbon Optimization Method for Regional Integrated Energy Systems Based on tscTFCSNPS Path Selection

中文摘要英文摘要

为了解决区域综合能源系统(regional integrated energy system,RIES)实际应用中难以确定最优供能路径的问题,提出一种区域综合能源下带时间约束的标注模糊有色脉冲神经膜系统(tagged fuzzy colored spiking neural P system with time sequence constraint,tscTFCSNPS)供能路径寻优推理模型,以研究系统在参变量相同条件下,不同供能路径运行的优劣情况.首先,在满足负荷需求的情况下,使用RIES-tscTFCSNPS模型选出所有符合约束条件的供能路径;然后,将运行成本和CO2 排放量两个目标函数进行加权组合,建立一个新的目标函数,并使用遗传算法对其进行优化求解;最后,通过分析优化结果,得到在不同场景下的最优供能方案.以某综合园区为例,设置 4 种不同场景进行实验分析,仿真结果表明所提模型有效提高了系统的经济性,并降低了CO2 的排放量.

Determining the optimal energy supply path in the practical application of a regional integrated energy system(RIES)is a complex problem.As a solution,this study proposes an energy supply path optimization inference model based on a RIES-tagged fuzzy colored spiking neural P system with a time sequence constraint(RIES-tscTFCSNPS),which is used to study the advantages and disadvantages of different energy supply paths under the same conditions.First,given that the load demands are satisfied,the RIES-tscTFCSNPS-based model was used to select all energy supply paths that satisfy the constraints.The two objective functions of running cost and CO2 emissions were then weighted and combined to establish a new objective function,which was optimized using a genetic algorithm.Finally,the optimal energy supply scheme for different scenarios was obtained by analyzing the optimization results.For an example analysis,we set four different scenarios based on a comprehensive park.The simulation results showed that the proposed model can effectively improve the system economy and reduce CO2 emissions.

刘佳良;王涛;潘怡

西华大学电气与电子信息学院,成都市 610039

动力与电气工程

区域综合能源系统脉冲神经膜系统路径优化遗传算法

regional integrated energy systemspiking neural P systemspath optimizationgenetic algorithm

《电力建设》 2024 (007)

54-67 / 14

This work is supported by the National Key R&D Program of China(No.2021YFB2601500). 国家重点研发计划资助项目(2021YFB2601500)

10.12204/j.issn.1000-7229.2024.07.005

评论