| 注册
首页|期刊导航|湖泊科学|可解释性长短期记忆模型用于预测湖泊总磷浓度变化

可解释性长短期记忆模型用于预测湖泊总磷浓度变化

丁艺鼎 范宏翔 徐力刚 蒋名亮 吕海深 朱永华 程俊翔

湖泊科学2024,Vol.36Issue(4):1046-1059,中插7,15.
湖泊科学2024,Vol.36Issue(4):1046-1059,中插7,15.DOI:10.18307/2024.0415

可解释性长短期记忆模型用于预测湖泊总磷浓度变化

The interpretable long-term and short-term memory model was used to predict the change of total phosphorus concentration in lakes

丁艺鼎 1范宏翔 2徐力刚 3蒋名亮 2吕海深 4朱永华 4程俊翔2

作者信息

  • 1. 河海大学水文与水资源学院,南京 210098||中国科学院南京地理与湖泊研究所,南京 210018
  • 2. 中国科学院南京地理与湖泊研究所,南京 210018
  • 3. 中国科学院南京地理与湖泊研究所,南京 210018||中国科学院大学南京学院,南京 211135||江西省鄱阳湖流域生态水利技术创新中心,南昌 330029
  • 4. 河海大学水文与水资源学院,南京 210098
  • 折叠

摘要

Abstract

The prediction and source identification of total phosphorus(TP)in lakes is critical for the management of water re-source and watershed ecology.However,non-stationarity caused by inconstant hydrodynamic conditions and the complex biochemi-cal reactions pose significant challenges in accurate forecast of lake TP concentrations.To address this challenge,this study intro-duced the Seasonal and Trend decomposition using Loess(STL)technique and SHapley additive exPlanations(SHAP),and com-bined them with Long Short-Term Memory(LSTM)and Gated Recurrent Unit(GRU)to develop an interpretable prediction frame-work.The framework was applied to enhance the prediction of lake TP concentrations and improving their interpretability.The study achieved the following results.(1)In the prediction of TP concentrations in Lake Luoma,this framework achieved a higher model fit with an R2 value of 0.878,outperforming LSTM and CNN-LSTM.By increasing the prediction time step to 8 hours,the frame-work achieved a better model fit with a decrease of MRE and RMSE by 47.1%and 33.3%,respectively.An analysis of the predic-tion trend for Lake Luoma revealed that the average TP concentration is 0.158 mg/L during the flood season,202.1%higher than that during non-flood seasons.(2)Canal inflow was the most influential factor on TP concentrations,with a contribution of 60%.Different sections(Sanwan and Sanchang)had large spatiotemporal variations in phosphorus sources influenced by hydrodynamics and meteorological factors.This study highlighted the potential of neural network models in predicting water pollution,and offered valuable insights into enhancing the learning capabilities and interpretability of traditional neural networks.

关键词

深度学习/LSTM/SHAP/总磷/可解释性研究/骆马湖

Key words

Deep learning/LSTM/SHAP/total phosphorus/interpretability/Lake Luoma

引用本文复制引用

丁艺鼎,范宏翔,徐力刚,蒋名亮,吕海深,朱永华,程俊翔..可解释性长短期记忆模型用于预测湖泊总磷浓度变化[J].湖泊科学,2024,36(4):1046-1059,中插7,15.

基金项目

国家自然科学基金项目(42307106,U2240224,42071033)、江西省科技计划项目(20232BAB213053,20213AAG01012,20222BCD46002,20224BAB213035)、江西省水利厅科技项目(202325ZDKT08)和长春市科技发展计划项目(23SH03)联合资助. (42307106,U2240224,42071033)

湖泊科学

OA北大核心CSTPCD

1003-5427

访问量0
|
下载量0
段落导航相关论文