| 注册
首页|期刊导航|湖南大学学报(自然科学版)|裂缝小目标缺陷的轻量化检测方法

裂缝小目标缺陷的轻量化检测方法

贾晓芬 江再亮 赵佰亭

湖南大学学报(自然科学版)2024,Vol.51Issue(6):52-62,11.
湖南大学学报(自然科学版)2024,Vol.51Issue(6):52-62,11.DOI:10.16339/j.cnki.hdxbzkb.2024266

裂缝小目标缺陷的轻量化检测方法

Lightweight Detection Method for Small Crack Target Defects

贾晓芬 1江再亮 2赵佰亭2

作者信息

  • 1. 安徽理工大学 电气与信息工程学院,安徽 淮南 232001||安徽理工大学 省部共建深部煤矿采动响应与灾害防控国家重点实验室,安徽 淮南 232001
  • 2. 安徽理工大学 电气与信息工程学院,安徽 淮南 232001
  • 折叠

摘要

Abstract

Timely and accurately capturing the tiny cracks in the shaft lining is of great significance for shaft safety.Lightweight detection models are the key to realizing the automatic detection of shaft lining cracks.Departing from existing traditional methods that focus on extracting deep semantic information,the application of geometric structure information represented by shallow features should be paid attention to and a lightweight detection model E-YOLOv5s for shaft lining cracks is proposed.Firstly,the lightweight convolution module,ECAConv,is designed,which integrates traditional convolution,depth-separable convolution,and an attention mechanism called ECA.Then,thefeature extraction capabilities are further enhanced by incorporating skip connections to construct the feature comprehensive extraction unit,E-C3.Thereby,the backbone network ECSP-Darknet53 is obtained,which significantly reduces network parameters and enhances the ability to extract deep fracture features of cracks.Finally,the feature fusion module ECACSP is proposed and the thin neck feature fusion module E-Neck is built by using multiple groups of ECAConv and ECACSP modules.The purpose of E-Neck is to fully fuse the geometric information of small crack targets and the semantic information of crack cracking degrees while accelerating the network reasoning.Experimental results show that the detection accuracy of E-YOLOv5s on the self-made shaft lining dataset is improved by 3.3%compared to YOLOv5s while the number of model parameters and GFLOPs are reduced by 44.9%and 43.7%,respectively.E-YOLOv5s can help promote the application of automatic detection of shaft lining cracks.

关键词

裂缝缺陷/小目标/深度学习/深度可分离卷积

Key words

crack defects/small targets/deep learning/depth-separable convolution

分类

信息技术与安全科学

引用本文复制引用

贾晓芬,江再亮,赵佰亭..裂缝小目标缺陷的轻量化检测方法[J].湖南大学学报(自然科学版),2024,51(6):52-62,11.

基金项目

国家自然科学基金资助项目(52174141),National Natural Science Foundation of China(52174141) (52174141)

安徽省自然科学基金资助项目(2108085ME158),Natural Science Foundation of Anhui Province(2108085ME158) (2108085ME158)

安徽省高校协同创新项目(GXXT-2020-54),Collaborative Innovation Project in Anhui Universities(GXXT-2020-54) (GXXT-2020-54)

安徽省重点研发计划支持项目(202004b11020029,202104a07020005),Key Research and Development Program Supported Projects in Anhui Province(202004b11020029,202104a07020005) (202004b11020029,202104a07020005)

湖南大学学报(自然科学版)

OA北大核心CSTPCD

1674-2974

访问量0
|
下载量0
段落导航相关论文