一种道路裂缝检测的变尺度VS-UNet模型OA北大核心CSTPCD
A Variable-scale VS-UNet Model for Road Crack Detection
为解决目前现有的图像分割算法存在检测精度低、对裂缝检测缺乏针对性等问题,采用多尺度特征融合方法,提出一种扩展LG Block模块Extend-LG Block,其由多个并行不同膨胀率的空洞卷积组成.通过参数可调节分支数量和空洞卷积膨胀率,从而改变其感受野大小,进而提取和融合不同尺度的裂缝特征.对比在深层使用多尺度特征融合模块的网络以及使用固定尺度结构进行多尺度特征融合的网络的优劣,提出一种变尺度结构的UNet模型VS-UNet,使用多个不同参数的Extend-LG Block替换UNet网络中的基本卷积块.该结构在网络浅层进行多尺度特征融合,多尺度特征融合模块提取的尺度随网络层加深逐渐减少.此结构在加强图像的细节特征提取能力的同时保持原有的抽象特征提取能力,还可避免网络参数的增加.在DeepCrack数据集以及CFD数据集上进行实验验证,结果表明,相较于其他两种结构和方法,提出的变尺度结构的网络在有更高检测精度的同时,在可视化实验对比上对各种大小的裂缝有更好的分割效果.最后与其他图像分割算法进行对比,各项指标与UNet相比均有一定程度提升,证明了网络改进的有效性.研究结果可为进一步提升道路裂缝检测效果提供参考.
Existing image segmentation algorithms face challenges related to low detection accuracy and a lack of specificity in crack detection.To address these challenges,this paper proposes an extended LG-Block module Extend-LG Block,which leverages a multi-scale feature fusion method.This module consists of multiple parallel dilated convolutions with different expansion rates.The number of branches and the expansion rate of dilated convolutions can be adjusted by parameters to change the size of its receptive field,and then extract and fuse crack features of different scales.By comparing the advantages and disadvantages of the network using a multi-scale feature fusion module in the deep layer and the network using a fixed scale structure for multi-scale feature fusion,a U-Net model with a variable scale structure named VS-UNet is proposed.The basic convolution Block in the UNet network is replaced by multiple Extend-LG blocks with different parameters.This structure performs multi-scale feature fusion in the shallow layer of the network,and the scale extracted by the multi-scale feature fusion module gradually decreases with the deepening of the network layer.This structure not only strengthens the detail feature extraction ability of the image while maintaining the original abstract feature extraction ability but also avoids the problem of increasing network parameters caused by the increase of convolution.Experiments are carried out on the DeepCrack dataset and CFD dataset.The results show that compared with the other two structures and methods,the proposed network with variable scale structure has higher detection accuracy and better segmentation effect for cracks of various sizes in visual experimental comparison.Finally,compared with other image segmentation algorithms,all indicators are improved to a certain extent compared with UNet,which proves the effectiveness of the improved network.
赵志宏;何朋;郝子晔
石家庄铁道大学 省部共建交通工程结构力学行为与系统安全国家重点实验室,河北 石家庄 050043||石家庄铁道大学 信息科学与技术学院,河北 石家庄 050043石家庄铁道大学 信息科学与技术学院,河北 石家庄 050043
计算机与自动化
U-Net多尺度裂缝检测空洞卷积深度学习
U-Netmulti-scalecrack detectiondilated convolutiondeep learning
《湖南大学学报(自然科学版)》 2024 (006)
63-72 / 10
国家自然科学基金资助项目(11972236,12172234),National Natural Science Foundation of China(11972236,12172234)
评论