基于小样本数据驱动的弹壳打凹-平底成形工艺参数优化决策方法OA北大核心CSTPCD
Optimization Decision Method for Cartridge Case Indenting-heading Process Parameters Driven by Small Sample Data
针对某外贸款弹壳在调试生产中加工质量差和模具寿命短的问题,提出一种基于小样本数据驱动的弹壳打凹-平底成形工艺参数多目标优化与决策方法.首先,利用中心复合试验法设计试验,将各试验方案代入有限元模型中进行数值模拟,以仿真结果为基础采用随机森林算法建立弹壳打凹-平底成形工艺参数与打凹下冲头最大等效应力、平底上冲头最大等效应力和平底成形后弹壳内圆角的多目标优化模型.其次,应用改进多目标灰狼优化算法对多目标优化模型进行寻优并获得非劣解集,采用主客观综合熵权-优劣解距离法评价决策出最优工艺参数组合.最后,采用该优化工艺参数组合进行数值模拟和工艺试验,结果显示,模拟结果与工艺试验结果吻合,弹壳底部内圆角充填饱满,模具使用寿命得到提高.
Aiming at the problems of low quality and short die life during the production commis-sioning,an optimization decision method for cartridge case indenting-heading process parameters driv-en by small sample was proposed.Firstly,the central composite experimental method was used to de-sign experiments,and each experimental scheme was incorporated into the finite element model for numerical simulation.Taking the maximum effective stress of indenting ejector,the maximum effec-tive stress of heading punch and inner fillet at the bottom of the cartridge case as the optimization goals,random forest algorithm was combined to construct the multi-objective optimization model of processing parameters in indenting-heading processes of cartridge cases based on the simulation re-sults.Secondly,the improved multi-objective grey wolf algorithm was applied to optimize the multi-objective optimization model and obtain a pareto solution.The optimal process parameter combination was evaluated and determined using the comprehensive entropy weight-TOPSIS method.Finally,the numerical simulation and processing experiments were carried out with the combination of optimal process parameters.The results show that the simulation results are consistent with the processing experiments,and the inner fillets at the bottom of the cartridge cases are filled fully,and the service life of the die is improved.
梁强;李雄;王海洋;王伟任;徐永航;刘新;杜彦斌
重庆工商大学机械工程学院,重庆,400067重庆长江电工工业集团有限公司,重庆,401336驻重庆地区第三军事代表室,重庆,400000
金属材料
弹壳小样本驱动改进多目标灰狼优化算法打凹-平底成形
cartridge casesmall sample driveimproved multi-objective grey wolf optimization algorithmindenting-heading
《中国机械工程》 2024 (006)
1086-1096 / 11
重庆市自然科学基金(CSTB2022NSCQ-MSX0473);重庆市高校创新研究群体项目(CXQT21024);制造装备机构设计与控制重庆市重点实验室开放课题(KFJJ2019078);重庆工商大学研究生创新型科研项目(YJSCXX2023-211-54)
评论