考虑储能调控优化的配电网分布式电源选址定容OACSTPCD
Placement and sizing of distributed generation in distribution networks considering energy storage scheduling optimization
稳定配电网潮流分布、明确分布式电源的接入位置和容量是含分布式电源配电网优化运行的重要问题.提出一种基于深度强化学习算法的储能调控优化模型,实现分布式电源配置与用电负荷需求关系的匹配,从而稳定高渗透率下配电网的潮流分布.以线路损耗与电压波动性为损失函数,提出基于多目标遗传算法的分布式电源选址定容决策模型.在IEEE 14节点系统进行测试,结果表明该算法能够有效选择分布式电源的最佳接入位置和容量,在保证电压幅值不产生过大波动的同时,进一步降低了整体网络的线路损耗.
Stabilizing the power flow distribution in distribution networks and determining the connection locations and capacities of distributed generation are crucial issues in optimizing the operation of distribution networks with dis-tributed generation.This paper proposes an energy storage scheduling and optimization model based on deep rein-forcement learning(deep RL)to match the relationship between distributed energy resource allocation and electricity load demand,thereby stabilizing power flow distribution in distribution networks with high penetration rates.Using line losses and voltage fluctuations as the loss functions,the paper proposes a decision-making model for placement and sizing of distributed generation based on multi-objective genetic algorithm.Testing is conducted on the IEEE 14-bus system,and the results indicate that the algorithm can effectively select the optimal connection locations and ca-pacities for distributed generation,reducing overall line losses while ensuring voltage amplitude remains stable.
李童宇;武浩然;陈衡;刘涛;李国亮
华北电力大学,北京 102206北京国电通网络技术有限公司,北京 100086国网山东省电力公司枣庄供电公司,山东 枣庄 277000
分布式电源深度强化学习储能优化多目标遗传算法选址定容
distributed generationdeep RLenergy storage optimizationmulti-objective genetic algorithmplace-ment and sizing
《浙江电力》 2024 (006)
41-51 / 11
国家电网有限公司科技项目(5108-202218280A-2-142-XG)
评论