|国家科技期刊平台
首页|期刊导航|电力科技与环保|基于CIFE-FOA-DELM的SCR脱硝入口NOx浓度预测方法研究

基于CIFE-FOA-DELM的SCR脱硝入口NOx浓度预测方法研究OA

A CIFE-FOA-DELM method for predicting NOx concentration at the inlet of SCR denitration system

中文摘要英文摘要

针对脱硝入口NOx浓度监测值作为脱硝前馈输入导致的喷氨控制滞后问题,提出了基于炉膛参数的脱硝入口NOx浓度CIFE-FOA-DELM预测方法.采用互信息特征选择方法进行预测模型的特征变量筛选;引入经果蝇寻优算法优化的深度极限学习建立NOx浓度预测模型;并利用某660 MW火电机组历史运行数据进行模型验证,与反向传播、支持向量机、深度极限学习机、FOA-SVM模型的预测结果进行对比.结果表明:CIFE-FOA-DELM预测方法具备更高的预测精度,平均绝对百分比误差SMAPE、均方根误差SRMSE、拟合优度R2分别为0.261%、1.384、0.965.与CEMS监测数据对比,脱硝入口NOx浓度预测值提前了180 s,有利于解决喷氨控制滞后问题.

Aiming at the lag problem of ammonia injection control caused by the monitoring value of denitrification inlet NOx concentration as the feed-forward input of denitrification,the CIFE-FOA-DELM prediction method of denitrification inlet NOx concentration based on furnace parameters is proposed. A mutual information feature selection method is used to select feature variables for the prediction model;deep limit learning optimised by Drosophila optimisation algorithm is introduced to establish the NOx concentration prediction model;and the model is validated by using the historical operation data of a 660 MW thermal power unit,and the prediction results are compared with those of the back-propagation,support vector machine,deep limit learning machine,and FOA-SVM models. The results show that the CIFE-FOA-DELM prediction method has higher prediction accuracy,and the mean absolute percentage error (SMAPE),the root mean square error (SRMSE),and the goodness of fit (R2) are 0.261%,1.384%,and 0.965%,respectively,and the prediction of the denitrification inlet NOx concentration is 180 s ahead of schedule when compared with the CEMS data,which is conducive to solving the ammonia injection control lag problem. The problem of ammonia injection control lag is solved.

董威;林子杰;王雅昀

上海金艺检测技术有限公司,上海 200000国家能源集团科学技术研究院有限公司,江苏 南京 210023

能源与动力

SCR脱硝入口NOx浓度CIFE-FOA-DELM互信息特征选择果蝇优化算法深度极限学习机喷氨控制

SCRNOx concentration at the denitrification inletcife-foa-delmmutual information feature selectiondrosophila optimization algorithmdeep extreme learning machineammonia injection control

《电力科技与环保》 2024 (003)

313-320 / 8

国家重点研发计划(2022YFC3701504)

10.19944/j.eptep.1674-8069.2024.03.011

评论