基于鸟群人工鱼群算法的区块链移动边缘计算卸载模型OA
Blockchain Mobile Edge Computing Offloading Model Based on Bird Swarm Artificial Fish Swarm Algorithm
计算密集型任务数量的增加导致智能移动设备(Smart Mobile Devices,SMD)计算任务过载,借助MEC(Mo-bile Edge Computing Servers)及利用网络中空闲边缘设备(Edge Devices,ED)可使计算能力受限的SMD将计算任务卸载到MEC和ED协作中,并基于委托信誉证明(Delegated Proof of Reputation,DPoR)共识机制增强系统的安全性.文中提出一种基于鸟群人工鱼群算法(Bird Swarm-Artificial Fish Swarm Algorithm,BS-AFSA)的区块链移动边缘计算卸载模型,将任务卸载问题转化为优化目标函数来降低计算开销.采用改进鸟群人工鱼群算法来优化任务时延和能量消耗,对算法中的行为参数进行针对性构造,并改进拥挤度因子来提高后期迭代中寻优的局部搜索精度.仿真结果表明,与其他基准算法相比,文中所提算法减少了陷入局部最优的可能性,并降低了联合卸载方案的系统总开销.
The rapid increase in the number of computing-intensive tasks has led to an overload of SMD(Smart Mobile Devices)computing tasks.By using MEC(Mobile Edge Computing Servers)and idle ED(Edge De-vices)in the network,SMD with limited computing power can offload computing tasks to MEC and ED collaboration,and enhance system security based on the DPoR(Delegated Proof of Reputation)consensus mechanism.This study proposes a blockchain mobile edge computing offloading model based on BS-AFSA(Bird Swarm-Artificial Fish Swarm Algorithm),which transforms the task offloading problem into an optimization objective function to reduce the computational overhead.The improved BS-AFSA is used to optimize the task delay and energy consumption,and the behavior parameters in the algorithm are constructed and the crowding factor is improved to elevate the local search accuracy in the later iteration.The simulation results show that compared with other benchmark algorithms,the proposed algorithm reduces the possibility of falling into local optimum and effectively reduces the total system cost of the joint offloading scheme.
孔小爽;袁健
上海理工大学 光电信息与计算机工程学院,上海 200093
计算机与自动化
区块链移动边缘计算计算卸载共识机制鸟群算法人工鱼群算法任务时延能耗优化问题
blockchainmobile edge computingcomputation offloadingconsensus mechanismbird swarm algorithmartificial fish swarm algorithmtask delay and energy consumptionoptimization problem
《电子科技》 2024 (008)
26-33 / 8
国家自然科学基金(61775139)National Natural Science Foundation of China(61775139)
评论