基于需求不确定性的数据驱动库存管理研究综述OACHSSCDCSTPCD
A Review of Data-driven Inventory Management Based on Demand Uncertainty
随着高质量数据的日益丰富、机器学习技术的持续进步以及计算能力的显著提升,数据驱动库存管理正迎来前所未有的发展机遇.然而,目前学术界对于这一新兴领域的研究进展尚缺乏全面系统的综述.本研究运用文献计量方法,深入分析了 183 篇学术论文,并通过科学知识图谱的可视化方式,全面展示了该领域的研究现状.从大数据和运营管理的双重视角出发,总结归纳了数据驱动库存管理在需求信息、基本模型和基本方法 3个方面的研究结果.重点从需求不确定性和特征数据的角度介绍了 4种库存管理模型:单变量数据驱动报童模型、单变量数据驱动动态库存模型、多特征数据驱动报童模型和多特征数据驱动动态库存模型.在此基础上,梳理了 6种主要的数据驱动决策方法,包括贝叶斯方法、鲁棒优化方法、样本均值近似方法、分位数回归方法、操作统计方法和机器学习方法.最后,本研究从数据驱动库存管理方法与工具层面,以及面临的难点与应用热点层面,提出了未来研究的方向与建议,旨在为相关领域的研究者和实践者提供有益的参考和启示,推动数据驱动库存管理领域不断发展.
In recent years,with the increasing abundance of high-quality data,continuous development of machine learning techniques and significant improvements of computational capabilities,data-driven inventory management is experiencing unprecedented development opportunities.However,comprehensive and systematic reviews of research advances in this emerging field are currently lacking.In this study,an in-depth analysis of 183 academic papers is conducted using bibliometrics,and the state of the art in this field is visualized through scientific knowledge graphs.Then,the research results of data-driven inventory management from the perspectives of big data and operation management are summarized and synthesized in three aspects:demand information,basic models and basic methods.Essentially,this paper introduces four inventory management models from the perspectives of demand uncertainty and feature data:univariate data-driven newsvendor model,univariate data-driven dynamic inventory model,multi-feature data-driven newsvendor model and multi-feature data-driven dynamic inventory model.On this basis,six main data-driven decision-making methods are summarized:Bayesian analysis,robust optimization,sample average approximation,quantile regression,operation statistics and machine learning.Finally,future research directions and suggestions are discussed from the perspectives of methodologies,tools,challenges,and application hotspots in data-driven inventory management,aiming to provide valuable references and insights for researchers and practitioners in the relevant fields,and to foster the continuous development of data-driven inventory management.
邵思淇;钟远光;陈植;李延希
华南理工大学 工商管理学院,广东 广州 510645香港中文大学 深圳研究院,广东 深圳 518172
经济学
数据驱动库存管理报童动态库存研究综述
data-driveninventory managementnewsvendordynamic inventoryliterature review
《工业工程》 2024 (003)
1-11 / 11
国家自然科学基金资助项目(72325011,72321001)
评论