| 注册
首页|期刊导航|地质通报|基于MobileViT的岩石薄片图像岩性识别方法研究

基于MobileViT的岩石薄片图像岩性识别方法研究

王琼 杨杰 霍凤财 董宏丽 任伟建 于涛

地质通报2024,Vol.43Issue(6):938-946,9.
地质通报2024,Vol.43Issue(6):938-946,9.DOI:10.12097/gbc.2022.10.002

基于MobileViT的岩石薄片图像岩性识别方法研究

Lithology identification method of rock thin section images based on MobileViT

王琼 1杨杰 2霍凤财 2董宏丽 2任伟建 2于涛3

作者信息

  • 1. 东北石油大学电气信息工程学院,黑龙江大庆 163318
  • 2. 东北石油大学电气信息工程学院,黑龙江大庆 163318||东北石油大学人工智能能源研究院,黑龙江大庆 163318||黑龙江省网络化与智能控制重点实验室,黑龙江大庆 163318||东北石油大学三亚海洋油气研究院,海南三亚 572000
  • 3. 大庆油田有限责任公司第四采油厂工艺研究所,黑龙江大庆 163511
  • 折叠

摘要

Abstract

The rock thin-section images contain a large amount of geological feature information that cannot be observed with the naked eye.The lithology identification of rock thin-section images lays the foundation for subsequent oil exploration and production.Aiming at the problems of unbalanced lithology identification data set and many identification model parameters,an improved lightweight MobileViT model is proposed to model and analyze the rock slice images covering more than 90%of common lithology.First,to enable the model to better learn the unique features contained in each type of rock slice image,adding numbers of the dataset set is performed on the image.Secondly,use GELU to replace the ReLU6 of the MV2 module in MobileViT as the activation function of the module,which effectively solves the problem of neuron death and improves the convergence speed of the model.Finally,the training set and the test set are divided,the cosine annealing algorithm is used to automatically update the learning rate,and the transfer learning is used to speed up the training process,so as to realize the automatic identification of rock slice images.The experimental results show that the accuracy of the improved MobileViT for lithology identification is 82.8%,and the model parameters are only 7.66M,which has good robustness.

关键词

岩石薄片/岩性识别/MobileViT/余弦退火/轻量化

Key words

rock thin section/MobileViT/lithology identification/cosine annealing/light weight

分类

天文与地球科学

引用本文复制引用

王琼,杨杰,霍凤财,董宏丽,任伟建,于涛..基于MobileViT的岩石薄片图像岩性识别方法研究[J].地质通报,2024,43(6):938-946,9.

基金项目

黑龙江省自然科学基金项目《基于分布式算法和多源异构井筒数据驱动的页岩储层有利区评价研究》(编号:LH2023F007) (编号:LH2023F007)

地质通报

OA北大核心CSTPCD

1671-2552

访问量0
|
下载量0
段落导航相关论文