|国家科技期刊平台
首页|期刊导航|浙江大学学报(理学版)|一类带(p,q)-Laplace算子离散问题正解的存在性

一类带(p,q)-Laplace算子离散问题正解的存在性OA北大核心CSTPCD

Existence of positive solutions for a class of discrete problems with(p,q)-Laplace operators

中文摘要英文摘要

运用上下解方法获得了一类半正离散(p,q)-Laplace问题{-Δ(ϕp(Δu(t-1)))-Δ(ϕq(Δu(t-1)))=λf(u(t)),t∈[1,T]Z,Δu(0)=u(T+1)=0正解的存在性,其中,p>q>1,参数λ>0,T>2 为固定的整数,[1,T]Z={1,2,…,T},ϕr(s)=|s|r-2 s,Δu(t)=u(t+1)-u(t),f:(0,∞)→R在无穷远处满足p-次线性条件,在0处可能奇异.

By using the upper and lower solution method,this study proves the existence of positive solutions for a class of discrete problems with(p,q)-Laplace operators{-Δ(ϕp(Δu(t-1)))-Δ(ϕq(Δu(t-1)))=λf(u(t)),t∈[1,T]Z,Δu(0)=u(T+1)=0,where p>q>1,λ>0 is a parameter,T>2 is a fixed positive integer,[1,T]Z={1,2,…,T},ϕr(s)=|s|r-2 s,Δu(t)=u(t+1)-u(t),f:(0,∞)→R is p-sublinear at ∞ with possible singularity at 0.

石敏瑞;高承华

西北师范大学 数学与统计学院,甘肃 兰州 730070

数学

半正(p,q)-Laplace正解上下解方法

semipositone(p,q)-Laplacepositive solutionthe upper and lower solution method

《浙江大学学报(理学版)》 2024 (004)

438-442 / 5

国家自然科学基金资助项目(11961060).

10.3785/j.issn.1008-9497.2024.04.006

评论