一类带(p,q)-Laplace算子离散问题正解的存在性OA北大核心CSTPCD
Existence of positive solutions for a class of discrete problems with(p,q)-Laplace operators
运用上下解方法获得了一类半正离散(p,q)-Laplace问题{-Δ(ϕp(Δu(t-1)))-Δ(ϕq(Δu(t-1)))=λf(u(t)),t∈[1,T]Z,Δu(0)=u(T+1)=0正解的存在性,其中,p>q>1,参数λ>0,T>2 为固定的整数,[1,T]Z={1,2,…,T},ϕr(s)=|s|r-2 s,Δu(t)=u(t+1)-u(t),f:(0,∞)→R在无穷远处满足p-次线性条件,在0处可能奇异.
By using the upper and lower solution method,this study proves the existence of positive solutions for a class of discrete problems with(p,q)-Laplace operators{-Δ(ϕp(Δu(t-1)))-Δ(ϕq(Δu(t-1)))=λf(u(t)),t∈[1,T]Z,Δu(0)=u(T+1)=0,where p>q>1,λ>0 is a parameter,T>2 is a fixed positive integer,[1,T]Z={1,2,…,T},ϕr(s)=|s|r-2 s,Δu(t)=u(t+1)-u(t),f:(0,∞)→R is p-sublinear at ∞ with possible singularity at 0.
石敏瑞;高承华
西北师范大学 数学与统计学院,甘肃 兰州 730070
数学
半正(p,q)-Laplace正解上下解方法
semipositone(p,q)-Laplacepositive solutionthe upper and lower solution method
《浙江大学学报(理学版)》 2024 (004)
438-442 / 5
国家自然科学基金资助项目(11961060).
评论