| 注册
首页|期刊导航|电子科技|基于关键区域特征提取与二阶段分类网络的场景识别方法

基于关键区域特征提取与二阶段分类网络的场景识别方法

韩瀛昊 李菲菲

电子科技2024,Vol.37Issue(7):25-32,8.
电子科技2024,Vol.37Issue(7):25-32,8.DOI:10.16180/j.cnki.issn1007-7820.2024.07.004

基于关键区域特征提取与二阶段分类网络的场景识别方法

Scene Recognition Algorithm Based on Discriminative Patch Extraction and Two-Stage Classification

韩瀛昊 1李菲菲1

作者信息

  • 1. 上海理工大学 光电信息与计算机工程学院,上海 200093
  • 折叠

摘要

Abstract

In the scene recognition task,there are cases where heterogeneous scenes contain items with high similarity or the spatial layout of similar scenes is too different,that is,the inter-class similarity and intra-class difference of scenes.Existing methods improve the discriminant ability of classifiers by enhancing data sets or using multi-level information complementation.Although some improvements have been made,there are still limitations.In this study,the DPE(Discriminative Patch Extraction)and TSC(Two-Stage Classification)network method are proposed to overcome the inter-class similarity and intra-class difference of scenes.DPE avoids the impact of intra-class differences on scene recognition by preserving the key information regions in images,while the TSC net-work avoids the impact of inter-class similarities on scene recognition by the coarse-fine two-stage training.After combining the proposed method with baseline networks such as ViT(Vision Transformer),the classification accuracy of classical scene recognition data sets Scene15,MITindoor67 and SUN397 reaches 96.9%,88.4%and 76.0%,respectively.The proposed method achieves the highest classification accuracy of 60.5%on the largest scene recog-nition dataset Places365.

关键词

场景识别/深度神经网络/类间相似/类内差异/数据增强/关键区域特征提取/二阶段分类/ViT

Key words

scene recognition/deep neural networks/inter-class similarity/intra-class variability/data augmentation/discriminative patch extraction/two-stage classification/ViT

分类

信息技术与安全科学

引用本文复制引用

韩瀛昊,李菲菲..基于关键区域特征提取与二阶段分类网络的场景识别方法[J].电子科技,2024,37(7):25-32,8.

基金项目

上海市高校特聘教授(东方学者)岗位计划(ES2015XX)Program for Professor of Special Appointment(Eastern Scholar)at Shanghai Institutions of Higher Learning(ES2015XX) (东方学者)

电子科技

1007-7820

访问量4
|
下载量0
段落导航相关论文