|国家科技期刊平台
首页|期刊导航|电子科技|融合片内语义和片间结构特征的自监督CT图像分类方法

融合片内语义和片间结构特征的自监督CT图像分类方法OA

A Self-Supervised CT Image Classification Method Incorporating Intra-Slice Semantic and Inter-Slice Structural Features

中文摘要英文摘要

针对CT(Computed Tomography)图像分析存在人工标签稀缺、分类性能不佳等问题,文中提出一种融合片内语义和片间结构特征的自监督CT图像分类方法.该方法利用CT图像的层次结构特性和局部组成要素的语义特点,通过混淆切片生成算法对无标签的病灶部位图像进行处理,生成空间指数和混淆切片作为监督信息.在自监督辅助任务中利用ResNet50 网络从混淆切片中同时提取与病灶部位相关的CT片内语义和片间结构特征,将学习到的特征迁移到后续医学分类任务中,使得最终模型从无标签数据中获得增益.实验结果表明,当被使用的有标签数据有限时,相比其他针对CT图像的二维模型和三维模型,所提方法的分类性能和标签利用效率更优.

In view of the scarcity of artificial labels and poor classification performance in CT(Computed Tomo-graphy)image analysis,a self-supervised CT image classification method combining in-slice semantic and inter-slice structural features is proposed in this study.In this method,the hierarchical structure of CT images and the se-mantic features of local components are utilized to process the unlabeled lesion images through the confusion section generation algorithm,and the spatial index and confusion section are generated as supervisory information.In the self-supervised auxiliary task,the ResNet50 network was used to extract both the intraslice semantic and interslice structural features related to the lesion site from the confused sections,and the learned features were transferred to the subsequent medical classification task,so that the final model gained from the unlabeled data.The experimental re-sults show that compared with other 2D and 3D models for CT images,the proposed method can achieve better classi-fication performance and label utilization efficiency when the used labeled data is limited.

曹春萍;许志华

上海理工大学 光电信息与计算机工程学院,上海 200093

计算机与自动化

医学图像分类三维医学图像处理CT图像自监督学习迁移学习小样本学习片内语义特征片间结构特征ResNet50

medical image classification3D medical image processingCT imagesself-supervised learningtransfer learningfew shot learningintra-slice semantic featuresinter-slice structural featuresResNet50

《电子科技》 2024 (007)

43-52 / 10

浙江省卫生健康委员会面上项目(2022KY122);浙江省中医药科技计划(2019ZA023)Zhejiang Health and Wellness Commission Facially Project(2022KY122);Zhejiang TCM Science and Technology Program(2019ZA023)

10.16180/j.cnki.issn1007-7820.2024.07.006

评论