| 注册
首页|期刊导航|电子科技|基于改进YOLOv5的路面坑洼检测方法

基于改进YOLOv5的路面坑洼检测方法

何幸 黄永明 朱勇

电子科技2024,Vol.37Issue(7):53-59,7.
电子科技2024,Vol.37Issue(7):53-59,7.DOI:10.16180/j.cnki.issn1007-7820.2024.07.007

基于改进YOLOv5的路面坑洼检测方法

Pavement Pothole Detection Method Based on Improved YOLOv5

何幸 1黄永明 1朱勇1

作者信息

  • 1. 东南大学 自动化学院,江苏 南京 210018
  • 折叠

摘要

Abstract

Pothole is a common road disease,it reduce driving safety,accurate and rapid detection of potholes is more important.In viewof the problem that the detection accuracy of existing pothole detection methods is not high in the scenario of small targets and dense targets,an improved YOLOv5(You Only Look Once version 5)model is proposed in this study.TheCBAM(Convolutional Block Attention Module)is introduced into YOLOv5's backbone net-work to improve the model's ability to pay attention to key features.The loss function of YOLOv5 is changed to EIoU(Efficient Intersection over Union)to improve the detection accuracy of the model.The experimental results show that the proposed model can detect Potholes quickly and accurately in the scenarios of small targets and dense targets,and the mAP(mean Average Precision)in the open source Annotated Potholes Image Dataset reaches 82%.Compared with YOLOv5 and other mainstream methods,it is also improved.

关键词

路面坑洼/深度学习/YOLOv5/注意力机制/CBAM注意力/小目标检测/密集目标检测/损失函数

Key words

pavement potholes/deep learning/YOLOv5/attention mechanism/CBAM attention/small target detection/dense target detection/loss function

分类

信息技术与安全科学

引用本文复制引用

何幸,黄永明,朱勇..基于改进YOLOv5的路面坑洼检测方法[J].电子科技,2024,37(7):53-59,7.

基金项目

江苏省重点研发计划(BE2020116)Jiangsu Provincial Key R&D Programme(BE2020116) (BE2020116)

电子科技

1007-7820

访问量0
|
下载量0
段落导航相关论文